642 research outputs found
A VLA Search for the Geminga Pulsar: A Bayesian Limit on a Scintillating Source
We derive an upper limit of 3 mJy (95% confidence) for the flux density at
317 MHz of the Geminga pulsar (J0633+1746). Our results are based on 7 hours of
fast-sampled VLA data, which we averaged synchronously with the pulse period
using a period model based on CGRO/EGRET gamma-ray data. Our limit accounts for
the fact that this pulsar is most likely subject to interstellar scintillations
on a timescale much shorter than our observing span. Our Bayesian method is
quite general and can be applied to calculate the fluxes of other scintillated
sources. We also present a Bayesian technique for calculating the flux in a
pulsed signal of unknown width and phase.
Comparing our upper limit of 3 mJy with the quoted flux density of Geminga at
102 MHz, we calculate a lower limit to its spectral index of 2.7. We discuss
some possible reasons for Geminga's weakness at radio wavelengths, and the
likelihood that many of the unidentified EGRET sources are also radio-quiet or
radio-weak Geminga-like pulsars.Comment: 27 pages, including figures. Published in Ap
Surgical treatment of a giant tibial high-grade mixofibrosarcoma with preservation of limb function: a case report
Myxofibrosarcoma is one of the most common sarcomas in elderly patients showing a slight male prevalence. The tumor is mainly located in lower and upper extremities and rarely in trunk, neck and feet. We present a case of a 84-year-old man referred to our tumour center with a giant and neglected high-grade tibial myxofibrosarcoma in the anteromedial side of tibial mid-diaphysis. Large size lesions in association with older age may jeopardise the maintenance of limb vitality, vascularity and stability
Recommended from our members
Medicare: Changes to Balanced Budget Act of 1997 (BBA 97, P.L. 105-33) Provisions
This report summarizes the major provisions of the agreement between the by House and Senate negotiators on the Medicare provisions
Primary myxofibrosarcoma of the parotid: case report
<p>Abstract</p> <p>Background</p> <p>Myxofibrosarcoma is common in the extremities of elderly people and is characterized by a high frequency of local recurrence.</p> <p>Case presentation</p> <p>We report a 37 year old female who presented with a 4-month history of facial pain and a 3-month history of painful progressive swelling in the preauricular area. She underwent a total parotidectomy. The tumor was histopathologically and immunohistochemically diagnosed as a low-grade myxofibrosarcoma. The patient was free of disease 9 months after surgery with uneventful post-operative clinical course.</p> <p>Conclusions</p> <p>Parotid area swelling should always alert doctors. To our knowledge, this is the first case of parotid myxofibrosarcoma. It should be added to the differential diagnosis of diseases of the parotid. We have to recognize this disease and seek adequate treatment for it.</p
Advection-Dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center
Sgr A* at the Galactic Center is a puzzling source. It has a mass
M=(2.5+/-0.4) x 10^6 solar masses which makes it an excellent black hole
candidate. Observations of stellar winds and other gas flows in its vicinity
suggest a mass accretion rate approximately few x 10^{-6} solar masses per
year. However, such an accretion rate would imply a luminosity > 10^{40} erg/s
if the radiative efficiency is the usual 10 percent, whereas observations
indicate a bolometric luminosity <10^{37} erg/s. The spectrum of Sgr A* is
unusual, with emission extending over many decades of wavelength. We present a
model of Sgr A* which is based on a two-temperature optically-thin
advection-dominated accretion flow. The model is consistent with the estimated
mass and accretion rate, and fits the observed fluxes in the cm/mm and X-ray
bands as well as upper limits in the sub-mm and infrared bands; the fit is less
good in the radio below 86 GHz and in gamma-rays above 100 MeV. The very low
luminosity of Sgr A* is explained naturally in the model by means of advection.
Most of the viscously dissipated energy is advected into the central mass by
the accreting gas, and therefore the radiative efficiency is extremely low,
approximately 5 x 10^{-6}. A critical element of the model is the presence of
an event horizon at the center which swallows the advected energy. The success
of the model could thus be viewed as confirmation that Sgr A* is a black hole.Comment: 41 pages (Latex) including 6 Figures and 2 Tables. Final Revised
Version changes to text, tables and figures. ApJ, 492, in pres
Recommended from our members
Medicare Provisions in the Medicare, Medicaid, and SCHIP Benefits Improvement and Protection Act of 2000 (BIPA, P.L. 106-554)
A luminosity constraint on the origin of unidentified high energy sources
The identification of point sources poses a great challenge for the high
energy community. We present a new approach to evaluate the likelihood of a set
of sources being a Galactic population based on the simple assumption that
galaxies similar to the Milky Way host comparable populations of gamma-ray
emitters. We propose a luminosity constraint on Galactic source populations
which complements existing approaches by constraining the abundance and spatial
distribution of any objects of Galactic origin, rather than focusing on the
properties of a specific candidate emitter. We use M31 as a proxy for the Milky
Way, and demonstrate this technique by applying it to the unidentified EGRET
sources. We find that it is highly improbable that the majority of the
unidentified EGRET sources are members of a Galactic halo population (e.g.,
dark matter subhalos), but that current observations do not provide any
constraints on all of these sources being Galactic objects if they reside
entirely in the disk and bulge. Applying this method to upcoming observations
by the Fermi Gamma-ray Space Telescope has the potential to exclude association
of an even larger number of unidentified sources with any Galactic source
class.Comment: 18 pages, 4 figures, to appear in JPhys
MAGIC observations of very high energy gamma-rays from HESS J1813-178
Recently, the HESS collaboration has reported the detection of gamma-ray
emission above a few hundred GeV from eight new sources located close to the
Galactic Plane. The source HESS J1813-178 has sparked particular interest, as
subsequent radio observations imply an association with SNR G12.82-0.02.
Triggered by the detection in VHE gamma-rays, a positionally coincident source
has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC
observations of HESS J1813-178, resulting in the detection of a differential
gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt
dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We
briefly discuss the observational technique used, the procedure implemented for
the data analysis, and put this detection in the perspective of multifrequency
observations.Comment: Accepted by ApJ Letter
Systematic search for VHE gamma-ray emission from X-ray bright high-frequency BL Lac objects
All but three (M87, BL Lac and 3C 279) extragalactic sources detected so far
at very high energy (VHE) gamma-rays belong to the class of high-frequency
peaked BL Lac (HBL) objects. This suggested to us a systematic scan of
candidate sources with the MAGIC telescope, based on the compilation of X-ray
blazars by Donato et al. (2001). The observations took place from December 2004
to March 2006 and cover sources on the northern sky visible under small zenith
distances zd < 30 degrees at culmination. The sensitivity of the search was
planned for detecting X-ray bright F(1 keV) > 2 uJy) sources emitting at least
the same energy flux at 200 GeV as at 1 keV. In order to avoid strong gamma-ray
attenuation close to the energy threshold, the redshift of the sources was
constrained to values z<0.3. Of the fourteen sources observed, 1ES 1218+304 and
1ES 2344+514 have been detected in addition to the known bright TeV blazars Mrk
421 and Mrk 501. A marginal excess of 3.5 sigma from the position of 1ES
1011+496 was observed and has been confirmed as a source of VHE gamma-rays by a
second MAGIC observation triggered by a high optical state (Albert et al.
2007). For the remaining sources, we present here the 99% confidence level
upper limits on the integral flux above ~200 GeV. We characterize the sample of
HBLs (including all HBLs detected at VHE so far) by looking for correlations
between their multi-frequency spectral indices determined from simultaneous
optical, archival X-ray, and radio luminosities, finding that the VHE emitting
HBLs do not seem to constitute a unique subclass. The absorption corrected
gamma-ray luminosities at 200 GeV of the HBLs are generally not higher than
their X-ray luminosities at 1 keV.Comment: 15 pages, 7 figures, 5 tables, submitted to ApJ (revised version
- âŠ