104 research outputs found

    Dependence of CMI Growth Rates on Electron Velocity Distributions and Perturbation by Solitary Waves

    Full text link
    We calculate growth rates and corresponding gains for RX and LO mode radiation associated with the cyclotron maser instability for parameterized horseshoe electron velocity distributions. The velocity distribution function was modeled to closely fit the electron distribution functions observed in the auroral cavity. We systematically varied the model parameters as well as the propagation direction to study the dependence of growth rates on model parameters. The growth rate depends strongly on loss cone opening angle, which must be less than 90o90^{o} for significant CMI growth. The growth rate is sharply peaked for perpendicular radiation (k=0k_{\parallel} = 0), with a full-width at half-maximum 1.7o1.7^{o}, in good agreement with observed k-vector orientations and numerical simulations. The fractional bandwidth varied between 104^{-4} and 102^{-2}, depending most strongly on propagation direction. This range encompasses nearly all observed fractional AKR burst bandwidths. We find excellent agreement between the computed RX mode emergent intensities and observed AKR intensities assuming convective growth length LcL_c\approx20-40 km and group speed 0.15cc. The only computed LO mode growth rates compatible observed LO mode radiation levels occurred for number densities more than 100 times the average energetic electron densities measured in auroral cavities. This implies that LO mode radiation is not produced directly by the CMI mechanism but more likely results from mode conversion of RX mode radiation. We find that perturbation of the model velocity distribution by large ion solitary waves (ion holes) can enhance the growth rate by a factor of 2-4. This will result in a gain enhancement more than 40 dB depending on the convective growth length within the structure. Similar enhancements may be caused by EMIC waves.Comment: 21 pages, 11 figures. J. Geophys. Res. 2007 (accepted

    BMP9 Protects Septal Neurons from Axotomy-Evoked Loss of Cholinergic Phenotype

    Get PDF
    Cholinergic projection from the septum to the hippocampus is crucial for normal cognitive function and degeneration of cells and nerve fibers within the septohippocampal pathway contributes to the pathophysiology of Alzheimer's disease. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiating factor during development both in vivo and in vitro.To determine whether BMP9 could protect the adult cholinergic septohippocampal pathway from axotomy-evoked loss of the cholinergic phenotype, we performed unilateral fimbria-fornix transection in mice and treated them with a continuous intracerebroventricular infusion of BMP9 for six days. The number of choline acetyltransferase (CHAT)-positive cells was reduced by 50% in the medial septal nucleus ipsilateral to the lesion as compared to the intact, contralateral side, and BMP9 infusion prevented this loss in a dose-dependent manner. Moreover, BMP9 prevented most of the decline of hippocampal acetylcholine levels ipsilateral to the lesion, and markedly increased CHAT, choline transporter CHT, NGF receptors p75 (NGFR-p75) and TrkA (NTRK1), and NGF protein content in both the lesioned and unlesioned hippocampi. In addition, BMP9 infusion reduced bilaterally hippocampal levels of basic FGF (FGF2) protein.These data indicate that BMP9 administration can prevent lesion-evoked impairment of the cholinergic septohippocampal neurons in adult mice and, by inducing NGF, establishes a trophic environment for these cells

    Multiple Lines of Evidence Risk Assessment of Terrestrial Passerines Exposed to PCDFs and PCDDs in the Tittabawassee River Floodplain, Midland, Michigan, USA

    Get PDF
    A site-specific multiple lines of evidence risk assessment was conducted for house wrens (Troglodytes aedon) and eastern bluebirds (Sialia sialis) along the Tittabawassee River downstream of Midland, Michigan, where concentrations of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) in flood-plain soils and sediments are greater compared to upstream areas and some of the greatest anywhere in the world. Lines of evidence supporting the population-level assessment endpoints included site-specific dietary- and tissue-based exposure assessments and population productivity measurements during breeding seasons 2005–2007. While a hazard assessment based on site-specific diets suggested that populations residing in the downstream floodplain had the potential to be affected, concentrations in eggs compared to appropriate toxicity reference values (TRVs) did not predict a potential for population-level effects. There were no significant effects on reproductive success of either species. The most probable cause of the apparent difference between the dietary- and tissue-based exposure assessments was that the dietary-based TRVs were overly conservative based on intraperitoneal injections in the ring-necked pheasant. Agreement between the risk assessment based on concentrations of PCDFs and PCDDs in eggs and reproductive performance in both species supports the conclusion of a small potential for population-level effects at this site

    The molecular phylogeny of eph receptors and ephrin ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tissue distributions and functions of Eph receptors and their ephrin ligands have been well studied, however less is known about their evolutionary history. We have undertaken a phylogenetic analysis of Eph receptors and ephrins from a number of invertebrate and vertebrate species.</p> <p>Results</p> <p>Our findings indicate that Eph receptors form three major clades: one comprised of non-chordate and cephalochordate Eph receptors, a second comprised of urochordate Eph receptors, and a third comprised of vertebrate Eph receptors. Ephrins, on the other hand, fall into either a clade made up of the non-chordate and cephalochordate ephrins plus the urochordate and vertebrate ephrin-Bs or a clade made up of the urochordate and vertebrate ephrin-As.</p> <p>Conclusion</p> <p>We have concluded that Eph receptors and ephrins diverged into A and B-types at different points in their evolutionary history, such that primitive chordates likely possessed an ancestral ephrin-A and an ancestral ephrin-B, but only a single Eph receptor. Furthermore, ephrin-As appear to have arisen in the common ancestor of urochordates and vertebrates, whereas ephrin-Bs have a more ancient bilaterian origin. Ancestral ephrin-B-like ligands had transmembrane domains; as GPI anchors appear to have arisen or been lost at least 3 times.</p

    The genome of the sea urchin Strongylocentrotus purpuratus

    Get PDF
    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes
    corecore