86 research outputs found

    Knock down and insecticidal activity of the plants Tagetes minuta, Lippia javanica, Lantana camara, Tagetes erecta and Eucalyptus grandis on Anopheles arabiensis mosquitoes

    Get PDF
    The knock down and insecticidal effects of the plants Tagetes minuta, Lippia javanica, Lantana camara, Tagetes erecta and Eucalyptus grandis were evaluated against Anopheles arabiensis mosquitoes in thatched round huts in Mumurwi village. Leaves from these plants were smouldered in order to provide mosquito repellent smoke. Complete knock down was provided 40 minutes after mosquitoes were exposed to smoke of T. erecta, 60 minutes to smoke of T. minuta and E. grandis and 120 minutes to smoke of L. javanica. Complete knock down of mosquitoes could not be provided by L. camara within the 140-minute exposure period. The KT50 (time required to knock down 50% of the mosquitoes) values were 24.985 minutes (T. minuta), 34.473 minutes (T. erecta), 59.119 minutes (L. javanica), 59.828 minutes (L. camara) and 25.245 minutes (E. grandis). The KT90 (time required to knock down 90% of the mosquitoes) values were 48.060 minutes (T. minuta), 50.169 minutes (T. erecta), 178.341 minutes (L. javanica), 140.220 minutes (L. camara) and 47.998 minutes (E. grandis). Mortality rates 24h after exposure were 40% (T. minuta), 100% (T. erecta), 75% (L. javanica), 90% (L. camara) and 100% (E. grandis). In conclusion, smoke from the plants T. erecta, T. minuta and E. grandis had very fast knock down rates with T. erecta, L. camara and E. grandis killing over 90% of the An. arabiensis mosquitoes. Plant smoke is important in mosquito control

    Drug treatment of malaria infections can reduce levels of protection transferred to offspring via maternal immunity

    Get PDF
    Maternally transferred immunity can have a fundamental effect on the ability of offspring to deal with infection. However, levels of antibodies in adults can vary both quantitatively and qualitatively between individuals and during the course of infection. How infection dynamics and their modification by drug treatment might affect the protection transferred to offspring remains poorly understood. Using the rodent malaria parasite Plasmodium chabaudi, we demonstrate that curing dams part way through infection prior to pregnancy can alter their immune response, with major consequences for offspring health and survival. In untreated maternal infections, maternally transferred protection suppressed parasitaemia and reduced pup mortality by 75 per cent compared with pups from naïve dams. However, when dams were treated with anti-malarial drugs, pups received fewer maternal antibodies, parasitaemia was only marginally suppressed, and mortality risk was 25 per cent higher than for pups from dams with full infections. We observed the same qualitative patterns across three different host strains and two parasite genotypes. This study reveals the role that within-host infection dynamics play in the fitness consequences of maternally transferred immunity. Furthermore, it highlights a potential trade-off between the health of mothers and offspring suggesting that anti-parasite treatment may significantly affect the outcome of infection in newborns

    Cytokine responses to Schistosoma haematobium in a Zimbabwean population: contrasting profiles for IFN-γ, IL-4, IL-5 and IL-10 with age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of development of parasite-specific immune responses can be studied by following their age profiles in exposed and infected hosts. This study determined the cytokine-age profiles of Zimbabweans resident in a <it>Schistosoma haematobium </it>endemic area and further investigated the relationship between the cytokine responses and infection intensity.</p> <p>Methods</p> <p>Schistosome adult worm antigen-specific IFN-γ, IL-4, IL-5 and IL-10 cytokine responses elicited from whole blood cultures were studied in 190 Zimbabweans exposed to <it>S. haematobium </it>infection (aged 6 to 40 years old). The cytokines were measured using capture ELISAs and the data thus obtained together with <it>S. haematobium </it>egg count data from urine assays were analysed using a combination of parametric and nonparametric statistical approaches.</p> <p>Results</p> <p>Age profiles of schistosome infection in the study population showed that infection rose to peak in childhood (11–12 years) followed by a sharp decline in infection intensity while prevalence fell more gradually. Mean infection intensity was 37 eggs/10 ml urine (SE 6.19 eggs/10 ml urine) while infection prevalence was 54.7%. Measurements of parasite-specific cytokine responses showed that IL-4, IL-5 and IL-10 but not IFN-γ followed distinct age-profiles. Parasite-specific IL-10 production developed early, peaking in the youngest age group and declining thereafter; while IL-4 and IL-5 responses were slower to develop with a later peak. High IL-10 producers were likely to be egg positive with IL-10 production increasing with increasing infection intensity. Furthermore people producing high levels of IL-10 produced little or no IL-5, suggesting that IL-10 may be involved in the regulation of IL-5 levels. IL-4 and IFN-γ did not show a significant relationship with infection status or intensity and were positively associated with each other.</p> <p>Conclusion</p> <p>Taken together, these results show that the IL-10 responses develop early compared to the IL-5 response and may be down-modulating immunopathological responses that occur during the early phase of infection. The results further support current suggestions that the Th1/Th2 dichotomy does not sufficiently explain susceptibility or resistance to schistosome infection.</p

    Impact of Schistosome Infection on Plasmodium falciparum Malariometric Indices and Immune Correlates in School Age Children in Burma Valley, Zimbabwe

    Get PDF
    A group of children aged 6–17 years was recruited and followed up for 12 months to study the impact of schistosome infection on malaria parasite prevalence, density, distribution and anemia. Levels of cytokines, malaria specific antibodies in plasma and parasite growth inhibition capacities were assessed. Baseline results suggested an increased prevalence of malaria parasites in children co-infected with schistosomiasis (31%) compared to children infected with malaria only (25%) (p = 0.064). Moreover, children co-infected with schistosomes and malaria had higher sexual stage geometric mean malaria parasite density (189 gametocytes/µl) than children infected with malaria only (73/µl gametocytes) (p = 0.043). In addition, a larger percentage of co-infected children (57%) had gametocytes as observed by microscopy compared to the malaria only infected children (36%) (p = 0.06). There was no difference between the two groups in terms of the prevalence of anemia, which was approximately 64% in both groups (p = 0.9). Plasma from malaria-infected children exhibited higher malaria antibody activity compared to the controls (p = 0.001) but was not different between malaria and schistosome plus malaria infected groups (p = 0.44) and malaria parasite growth inhibition activity at baseline was higher in the malaria-only infected group of children than in the co-infected group though not reaching statistical significance (p = 0.5). Higher prevalence and higher mean gametocyte density in the peripheral blood may have implications in malaria transmission dynamics during co-infection with helminths

    Utility of Repeated Praziquantel Dosing in the Treatment of Schistosomiasis in High-Risk Communities in Africa: A Systematic Review

    Get PDF
    Infection by Schistosoma worms causes serious disease among people who live in areas of Africa, South America, and Asia where these parasites are regularly transmitted. Although yearly treatment with the drug praziquantel is fairly effective in reducing or eliminating active infection, it does not cure everyone, and reinfection remains a continuing problem in high-risk communities. Studies have suggested that a repeat dose of praziquantel, given 2 to 8 weeks after the first dose, can improve cure rates and reduce remaining intensity of infections in population-based programs. Our systematic review of published research found that, on average, in Africa, such repeated dosing appears to offer particular advantages in the treatment of S. mansoni, the cause of intestinal schistosomiasis, but there was less consistent improvement after double-dosing for S. haematobium, the cause of urogenital schistosomiasis. Based on this evidence, we used a calibrated life-path model to predict the costs and benefits of a single-dose vs. a double-dose strategy in a typical high-risk community. Our projections suggest cost-effective incremental benefits from double dosing in terms of i) limiting a person's total years spent infected and ii) limiting the number of years they spend with heavy infection, with consequent improvements in quality of life
    corecore