1,420 research outputs found

    Information Entropy in Cosmology

    Full text link
    The effective evolution of an inhomogeneous cosmological model may be described in terms of spatially averaged variables. We point out that in this context, quite naturally, a measure arises which is identical to a fluid model of the `Kullback-Leibler Relative Information Entropy', expressing the distinguishability of the local inhomogeneous mass density field from its spatial average on arbitrary compact domains. We discuss the time-evolution of `effective information' and explore some implications. We conjecture that the information content of the Universe -- measured by Relative Information Entropy of a cosmological model containing dust matter -- is increasing.Comment: LateX, PRLstyle, 4 pages; to appear in PR

    16O+16O^{16}{\rm O} + ^{16}{\rm O} nature of the superdeformed band of 32S^{32}{\rm S} and the evolution of the molecular structure

    Full text link
    The relation between the superdeformed band of 32S^{32}{\rm S} and 16O+16O^{16}{\rm O} + ^{16}{\rm O} molecular bands is studied by the deformed-base antisymmetrized molecular dynamics with the Gogny D1S force. It is found that the obtained superdeformed band members of 32S^{32}{\rm S} have considerable amount of the 16O+16O^{16}{\rm O} + ^{16}{\rm O} component. Above the superdeformed band, we have obtained two excited rotational bands which have more prominent character of the 16O+16O^{16}{\rm O} + ^{16}{\rm O} molecular band. These three rotational bands are regarded as a series of 16O+16O^{16}{\rm O} + ^{16}{\rm O} molecular bands which were predicted by using the unique 16O^{16}{\rm O} -16O^{16}{\rm O} optical potentil. As the excitation energy and principal quantum number of the relative motion increase, the 16O+16O^{16}{\rm O} + ^{16}{\rm O} cluster structure becomes more prominent but at the same time, the band members are fragmented into several states

    Shadow Codes over Z4

    Get PDF
    AbstractThe notion of a shadow of a self-dual binary code is generalized to self-dual codes over Z4. A Gleason formula for the symmetrized weight enumerator of the shadow of a Type I code is derived. Congruence properties of the weights follow; this yields constructions of self-dual codes of larger lengths. Weight enumerators and the highest minimum Lee, Hamming, and Euclidean weights of Type I codes of length up to 24 are studied
    • …
    corecore