34 research outputs found

    Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi

    Get PDF
    BACKGROUND: The signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane. The SRP of metazoans is well characterized and composed of an RNA molecule and six polypeptides. The particle is organized into the S and Alu domains. The Alu domain has a translational arrest function and consists of the SRP9 and SRP14 proteins bound to the terminal regions of the SRP RNA. So far, our understanding of the SRP and its evolution in lower eukaryotes such as protozoa and yeasts has been limited. However, genome sequences of such organisms have recently become available, and we have now analyzed this information with respect to genes encoding SRP components. RESULTS: A number of SRP RNA and SRP protein genes were identified by an analysis of genomes of protozoa and fungi. The sequences and secondary structures of the Alu portion of the RNA were found to be highly variable. Furthermore, proteins SRP9/14 appeared to be absent in certain species. Comparative analysis of the SRP RNAs from different Saccharomyces species resulted in models which contain features shared between all SRP RNAs, but also a new secondary structure element in SRP RNA helix 5. Protein SRP21, previously thought to be present only in Saccharomyces, was shown to be a constituent of additional fungal genomes. Furthermore, SRP21 was found to be related to metazoan and plant SRP9, suggesting that the two proteins are functionally related. CONCLUSIONS: Analysis of a number of not previously annotated SRP components show that the SRP Alu domain is subject to a more rapid evolution than the other parts of the molecule. For instance, the RNA portion is highly variable and the protein SRP9 seems to have evolved into the SRP21 protein in fungi. In addition, we identified a secondary structure element in the Sacccharomyces RNA that has been inserted close to the Alu region. Together, these results provide important clues as to the structure, function and evolution of SRP

    Which future transportation mode would you bet on? Part 3: Water

    No full text

    Amplification of plant U3 and U6 snRNA gene sequences using primers specific for an upstream promoter element and conserved intragenic regions.

    No full text
    U-snRNA genes in higher plants contain two essential promoter elements, the USE with sequence RTCCCACATCG and the TATA-like box, positioned in the -70 and -30 regions, respectively. Using an oligodeoxynucleotide containing the USE motif and oligodeoxynucleotides specific for the intragenic regions conserved in U-snRNAs, several sequences encoding U6 and U3 snRNAs were determined by polymerase chain reaction (PCR) amplification of Arabidopsis thaliana and tobacco genomic DNAs. This method provides a simple and rapid procedure for characterisation of plant U-snRNA genes and their promoters. It could also be used for the characterisation of other genes containing conserved upstream promoter elements. PCR-derived fragments were used as probes for the isolation of the U3 snRNA genes from a genomic library of Arabidopsis. Two isolated U3 genes were shown to be active when transfected into protoplasts of Nicotiana plumbaginifolia. Both U3 genes contain the USE and TATA-like upstream elements located in similar positions to the U6 genes of Arabidopsis. The encoded Arabidopsis U3 snRNAs can be folded into a secondary structure which is more similar to that of U3 RNAs from lower eukaryotes rather than from metazoa

    Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure.

    No full text
    The nuclear import of the spliceosomal snRNPs U1, U2, U4 and U5, is dependent on the presence of a complex nuclear localization signal (NLS). The latter is composed of the 5'-2,2,7-terminal trimethylguanosine (m3G) cap structure of the U snRNA and the Sm core domain. Here, we describe the isolation and cDNA cloning of a 45 kDa protein, termed snurportin1, which interacts specifically with m3G-cap but not m7G-cap structures. Snurportin1 enhances the m3G-capdependent nuclear import of U snRNPs in both Xenopus laevis oocytes and digitonin-permeabilized HeLa cells, demonstrating that it functions as an snRNP-specific nuclear import receptor. Interestingly, solely the m3G-cap and not the Sm core NLS appears to be recognized by snurportin1, indicating that at least two distinct import receptors interact with the complex snRNP NLS. Snurportin1 represents a novel nuclear import receptor which contains an N-terminal importin beta binding (IBB) domain, essential for function, and a C-terminal m3G-cap-binding region with no structural similarity to the arm repeat domain of importin alpha
    corecore