118 research outputs found
Atom cooling and trapping by disorder
We demonstrate the possibility of three-dimensional cooling of neutral atoms
by illuminating them with two counterpropagating laser beams of mutually
orthogonal linear polarization, where one of the lasers is a speckle field,
i.e. a highly disordered but stationary coherent light field. This
configuration gives rise to atom cooling in the transverse plane via a Sisyphus
cooling mechanism similar to the one known in standard two-dimensional optical
lattices formed by several plane laser waves. However, striking differences
occur in the spatial diffusion coefficients as well as in local properties of
the trapped atoms.Comment: 11 figures (postscript
Self-gravitating Brownian particles in two dimensions: the case of N=2 particles
We study the motion of N=2 overdamped Brownian particles in gravitational
interaction in a space of dimension d=2. This is equivalent to the simplified
motion of two biological entities interacting via chemotaxis when time delay
and degradation of the chemical are ignored. This problem also bears some
similarities with the stochastic motion of two point vortices in viscous
hydrodynamics [Agullo & Verga, Phys. Rev. E, 63, 056304 (2001)]. We
analytically obtain the density probability of finding the particles at a
distance r from each other at time t. We also determine the probability that
the particles have coalesced and formed a Dirac peak at time t (i.e. the
probability that the reduced particle has reached r=0 at time t). Finally, we
investigate the variance of the distribution and discuss the proper form
of the virial theorem for this system. The reduced particle has a normal
diffusion behaviour for small times with a gravity-modified diffusion
coefficient =r_0^2+(4k_B/\xi\mu)(T-T_*)t, where k_BT_{*}=Gm_1m_2/2 is a
critical temperature, and an anomalous diffusion for large times
~t^(1-T_*/T). As a by-product, our solution also describes the growth of
the Dirac peak (condensate) that forms in the post-collapse regime of the
Smoluchowski-Poisson system (or Keller-Segel model) for T<T_c=GMm/(4k_B). We
find that the saturation of the mass of the condensate to the total mass is
algebraic in an infinite domain and exponential in a bounded domain.Comment: Revised version (20/5/2010) accepted for publication in EPJ
Evaluation of a Previously Suggested Plasma Biomarker Panel to Identify Alzheimer's Disease
There is an urgent need for biomarkers in plasma to identify Alzheimer's disease (AD). It has previously been shown that a signature of 18 plasma proteins can identify AD during pre-dementia and dementia stages (Ray et al, Nature Medicine, 2007). We quantified the same 18 proteins in plasma from 174 controls, 142 patients with AD, and 88 patients with other dementias. Only three of these proteins (EGF, PDG-BB and MIP-1δ) differed significantly in plasma between controls and AD. The 18 proteins could classify patients with AD from controls with low diagnostic precision (area under the ROC curve was 63%). Moreover, they could not distinguish AD from other dementias. In conclusion, independent validation of results is important in explorative biomarker studies
Entangling Dipole-Dipole Interactions and Quantum Logic in Optical Lattices
We study a means of creating multiparticle entanglement of neutral atoms
using pairwise controlled dipole-dipole interactions in a three dimensional
optical lattice. For tightly trapped atoms the dipolar interaction energy can
be much larger than the photon scattering rate, and substantial coherent
evolution of the two-atom state can be achieved before decoherence occurs.
Excitation of the dipoles can be made conditional on the atomic states,
allowing for deterministic generation of entanglement. We derive selection
rules and a figure-of-merit for the dipole-dipole interaction matrix elements,
for alkali atoms with hyperfine structure and trapped in well localized center
of mass states. Different protocols are presented for implementing two-qubits
quantum logic gates such as the controlled-phase and swap gate. We analyze the
fidelity of our gate designs, imperfect due to decoherence from cooperative
spontaneous emission and coherent couplings outside the logical basis. Outlines
for extending our model to include the full molecular interactions potentials
are discussed.Comment: 53 pages, 7 figure
Neuroregeneration in neurodegenerative disorders
<p>Abstract</p> <p>Background</p> <p>Neuroregeneration is a relatively recent concept that includes neurogenesis, neuroplasticity, and neurorestoration - implantation of viable cells as a therapeutical approach.</p> <p>Discussion</p> <p>Neurogenesis and neuroplasticity are impaired in brains of patients suffering from Alzheimer's Disease or Parkinson's Disease and correlate with low endogenous protection, as a result of a diminished growth factors expression. However, we hypothesize that the brain possesses, at least in early and medium stages of disease, a "neuroregenerative reserve", that could be exploited by growth factors or stem cells-neurorestoration therapies.</p> <p>Summary</p> <p>In this paper we review the current data regarding all three aspects of neuroregeneration in Alzheimer's Disease and Parkinson's Disease.</p
In Silico Whole Genome Association Scan for Murine Prepulse Inhibition
Background
The complex trait of prepulse inhibition (PPI) is a sensory gating measure related to schizophrenia and can be measured in mice. Large-scale public repositories of inbred mouse strain genotypes and phenotypes such as PPI can be used to detect Quantitative Trait Loci (QTLs) in silico. However, the method has been criticized for issues including insufficient number of strains, not controlling for false discoveries, the complex haplotype structure of inbred mice, and failing to account for genotypic and phenotypic subgroups. Methodology/Principal Findings
We have implemented a method that addresses these issues by incorporating phylogenetic analyses, multilevel regression with mixed effects, and false discovery rate (FDR) control. A genome-wide scan for PPI was conducted using over 17,000 single nucleotide polymorphisms (SNPs) in 37 strains phenotyped. Eighty-nine SNPs were significant at a false discovery rate (FDR) of 5%. After accounting for long-range linkage disequilibrium, we found 3 independent QTLs located on murine chromosomes 1 and 13. One of the PPI positives corresponds to a region of human chromosome 6p which includes DTNBP1, a gene implicated in schizophrenia. Another region includes the gene Tsn which alters PPI when knocked out. These genes also appear to have correlated expression with PPI. Conclusions/Significance
These results support the usefulness of using an improved in silico mapping method to identify QTLs for complex traits such as PPI which can be then be used for to help identify loci influencing schizophrenia in humans
Body Fluid Cytokine Levels in Mild Cognitive Impairment and Alzheimer’s Disease: a Comparative Overview
This article gives a comprehensive overview of cytokine and other inflammation associated protein levels in plasma, serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). We reviewed 118 research articles published between 1989 and 2013 to compare the reported levels of 66 cytokines and other proteins related to regulation and signaling in inflammation in the blood or CSF obtained from MCI and AD patients. Several cytokines are evidently regulated in (neuro-) inflammatory processes associated with neurodegenerative disorders. Others do not display changes in the blood or CSF during disease progression. However, many reports on cytokine levels in MCI or AD are controversial or inconclusive, particularly those which provide data on frequently investigated cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). The levels of several cytokines are possible indicators of neuroinflammation in AD. Some of them might increase steadily during disease progression or temporarily at the time of MCI to AD conversion. Furthermore, elevated body fluid cytokine levels may correlate with an increased risk of conversion from MCI to AD. Yet, research results are conflicting. To overcome interindividual variances and to obtain a more definite description of cytokine regulation and function in neurodegeneration, a high degree of methodical standardization and patients collective characterization, together with longitudinal sampling over years is essential
- …