933 research outputs found

    Soliton turbulences in the complex Ginzburg-Landau equation

    Full text link
    We study spatio-temporal chaos in the complex Ginzburg-Landau equation in parameter regions of weak amplification and viscosity. Turbulent states involving many soliton-like pulses appear in the parameter range, because the complex Ginzburg-Landau equation is close to the nonlinear Schr\"odinger equation. We find that the distributions of amplitude and wavenumber of pulses depend only on the ratio of the two parameters of the amplification and the viscosity. This implies that a one-parameter family of soliton turbulence states characterized by different distributions of the soliton parameters exists continuously around the completely integrable system.Comment: 5 figure

    On the decay of turbulence in plane Couette flow

    Full text link
    The decay of turbulent and laminar oblique bands in the lower transitional range of plane Couette flow is studied by means of direct numerical simulations of the Navier--Stokes equations. We consider systems that are extended enough for several bands to exist, thanks to mild wall-normal under-resolution considered as a consistent and well-validated modelling strategy. We point out a two-stage process involving the rupture of a band followed by a slow regression of the fragments left. Previous approaches to turbulence decay in wall-bounded flows making use of the chaotic transient paradigm are reinterpreted within a spatiotemporal perspective in terms of large deviations of an underlying stochastic process.Comment: ETC13 Conference Proceedings, 6 pages, 5 figure

    Lyapunov exponents as a dynamical indicator of a phase transition

    Full text link
    We study analytically the behavior of the largest Lyapunov exponent λ1\lambda_1 for a one-dimensional chain of coupled nonlinear oscillators, by combining the transfer integral method and a Riemannian geometry approach. We apply the results to a simple model, proposed for the DNA denaturation, which emphasizes a first order-like or second order phase transition depending on the ratio of two length scales: this is an excellent model to characterize λ1\lambda_1 as a dynamical indicator close to a phase transition.Comment: 8 Pages, 3 Figure

    Shear induced grain boundary motion for lamellar phases in the weakly nonlinear regime

    Full text link
    We study the effect of an externally imposed oscillatory shear on the motion of a grain boundary that separates differently oriented domains of the lamellar phase of a diblock copolymer. A direct numerical solution of the Swift-Hohenberg equation in shear flow is used for the case of a transverse/parallel grain boundary in the limits of weak nonlinearity and low shear frequency. We focus on the region of parameters in which both transverse and parallel lamellae are linearly stable. Shearing leads to excess free energy in the transverse region relative to the parallel region, which is in turn dissipated by net motion of the boundary toward the transverse region. The observed boundary motion is a combination of rigid advection by the flow and order parameter diffusion. The latter includes break up and reconnection of lamellae, as well as a weak Eckhaus instability in the boundary region for sufficiently large strain amplitude that leads to slow wavenumber readjustment. The net average velocity is seen to increase with frequency and strain amplitude, and can be obtained by a multiple scale expansion of the governing equations

    Simple modeling of self-oscillation in Nano-electro-mechanical systems

    Full text link
    We present here a simple analytical model for self-oscillations in nano-electro-mechanical systems. We show that a field emission self-oscillator can be described by a lumped electrical circuit and that this approach is generalizable to other electromechanical oscillator devices. The analytical model is supported by dynamical simulations where the electrostatic parameters are obtained by finite element computations.Comment: accepted in AP

    Nonchaotic Stagnant Motion in a Marginal Quasiperiodic Gradient System

    Full text link
    A one-dimensional dynamical system with a marginal quasiperiodic gradient is presented as a mathematical extension of a nonuniform oscillator. The system exhibits a nonchaotic stagnant motion, which is reminiscent of intermittent chaos. In fact, the density function of residence times near stagnation points obeys an inverse-square law, due to a mechanism similar to type-I intermittency. However, unlike intermittent chaos, in which the alternation between long stagnant phases and rapid moving phases occurs in a random manner, here the alternation occurs in a quasiperiodic manner. In particular, in case of a gradient with the golden ratio, the renewal of the largest residence time occurs at positions corresponding to the Fibonacci sequence. Finally, the asymptotic long-time behavior, in the form of a nested logarithm, is theoretically derived. Compared with the Pomeau-Manneville intermittency, a significant difference in the relaxation property of the long-time average of the dynamical variable is found.Comment: 11pages, 5figure

    Spectral analysis and an area-preserving extension of a piecewise linear intermittent map

    Full text link
    We investigate spectral properties of a 1-dimensional piecewise linear intermittent map, which has not only a marginal fixed point but also a singular structure suppressing injections of the orbits into neighborhoods of the marginal fixed point. We explicitly derive generalized eigenvalues and eigenfunctions of the Frobenius--Perron operator of the map for classes of observables and piecewise constant initial densities, and it is found that the Frobenius--Perron operator has two simple real eigenvalues 1 and λd(1,0)\lambda_d \in (-1,0), and a continuous spectrum on the real line [0,1][0,1]. From these spectral properties, we also found that this system exhibits power law decay of correlations. This analytical result is found to be in a good agreement with numerical simulations. Moreover, the system can be extended to an area-preserving invertible map defined on the unit square. This extended system is similar to the baker transformation, but does not satisfy hyperbolicity. A relation between this area-preserving map and a billiard system is also discussed.Comment: 12 pages, 3 figure

    Uncertainty estimates and L_2 bounds for the Kuramoto-Sivashinsky equation

    Full text link
    We consider the Kuramoto-Sivashinsky (KS) equation in one spatial dimension with periodic boundary conditions. We apply a Lyapunov function argument similar to the one first introduced by Nicolaenko, Scheurer, and Temam, and later improved by Collet, Eckmann, Epstein and Stubbe, and Goodman, to prove that ||u||_2 < C L^1.5. This result is slightly weaker than that recently announced by Giacomelli and Otto, but applies in the presence of an additional linear destabilizing term. We further show that for a large class of Lyapunov functions \phi the exponent 1.5 is the best possible from this line of argument. Further, this result together with a result of Molinet gives an improved estimate for L_2 boundedness of the Kuramoto-Sivashinsky equation in thin rectangular domains in two spatial dimensions.Comment: 17 pages, 1 figure; typos corrected, references added; figure modifie

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Pattern formation and localization in the forced-damped FPU lattice

    Full text link
    We study spatial pattern formation and energy localization in the dynamics of an anharmonic chain with quadratic and quartic intersite potential subject to an optical, sinusoidally oscillating field and a weak damping. The zone-boundary mode is stable and locked to the driving field below a critical forcing that we determine analytically using an approximate model which describes mode interactions. Above such a forcing, a standing modulated wave forms for driving frequencies below the band-edge, while a ``multibreather'' state develops at higher frequencies. Of the former, we give an explicit approximate analytical expression which compares well with numerical data. At higher forcing space-time chaotic patterns are observed.Comment: submitted to Phys.Rev.
    corecore