27,045 research outputs found

    Exact solution for the energy density inside a one-dimensional non-static cavity with an arbitrary initial field state

    Full text link
    We study the exact solution for the energy density of a real massless scalar field in a two-dimensional spacetime, inside a non-static cavity with an arbitrary initial field state, taking into account the Neumann and Dirichlet boundary conditions. This work generalizes the exact solution proposed by Cole and Schieve in the context of the Dirichlet boundary condition and vacuum as the initial state. We investigate diagonal states, examining the vacuum and thermal field as particular cases. We also study non-diagonal initial field states, taking as examples the coherent and Schrodinger cat states.Comment: 10 pages, 8 figure

    The Dynamical State of Barnard 68: A Thermally Supported, Pulsating Dark Cloud

    Get PDF
    We report sensitive, high resolution molecular-line observations of the dark cloud Barnard 68 obtained with the IRAM 30-m telescope. We analyze spectral-line observations of C18O, CS(2--1), C34S(2--1), and N2H+(1--0) in order to investigate the kinematics and dynamical state of the cloud. We find extremely narrow linewidths in the central regions of the cloud. These narrow lines are consistent with thermally broadened profiles for the measured gas temperature of 10.5 K. We determine the thermal pressure to be a factor 4 -- 5 times greater than the non-thermal (turbulent) pressure in the central regions of the cloud, indicating that thermal pressure is the primary source of support against gravity in this cloud. This confirms the inference of a thermally supported cloud drawn previously from deep infrared extinction measurements. The rotational kinetic energy is found to be only a few percent of the gravitational potential energy, indicating that the contribution of rotation to the overall stability of the cloud is insignificant. Finally, our observations show that CS line is optically thick and self-reversed across nearly the entire projected surface of the cloud. The shapes of the self-reversed profiles are asymmetric and are found to vary across the cloud in such a manner that the presence of both inward and outward motions are observed within the cloud. Moreover, these motions appear to be globally organized in a clear and systematic alternating spatial pattern which is suggestive of a small amplitude, non-radial oscillation or pulsation of the outer layers of the cloud about an equilibrium configuration.Comment: To appear in the Astrophysical Journal; 23 pages, 8 figures; Manuscript and higher resolution images can be obtained at http://cfa-www.harvard.edu/~ebergin/pubs_html/b68_vel.htm

    Amplitude analysis of four-body decays using a massively-parallel fitting framework

    Full text link
    The GooFit Framework is designed to perform maximum-likelihood fits for arbitrary functions on various parallel back ends, for example a GPU. We present an extension to GooFit which adds the functionality to perform time-dependent amplitude analyses of pseudoscalar mesons decaying into four pseudoscalar final states. Benchmarks of this functionality show a significant performance increase when utilizing a GPU compared to a CPU. Furthermore, this extension is employed to study the sensitivity on the D0Dˉ0D^0 - \bar{D}^0 mixing parameters xx and yy in a time-dependent amplitude analysis of the decay D0K+ππ+πD^0 \rightarrow K^+\pi^-\pi^+\pi^-. Studying a sample of 50 000 events and setting the central values to the world average of x=(0.49±0.15)%x = (0.49 \pm0.15) \% and y=(0.61±0.08)%y = (0.61 \pm0.08) \%, the statistical sensitivities of xx and yy are determined to be σ(x)=0.019%\sigma(x) = 0.019 \% and σ(y)=0.019%\sigma(y) = 0.019 \%.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics, CHEP 201

    Methods for calculating nonconcave entropies

    Full text link
    Five different methods which can be used to analytically calculate entropies that are nonconcave as functions of the energy in the thermodynamic limit are discussed and compared. The five methods are based on the following ideas and techniques: i) microcanonical contraction, ii) metastable branches of the free energy, iii) generalized canonical ensembles with specific illustrations involving the so-called Gaussian and Betrag ensembles, iv) restricted canonical ensemble, and v) inverse Laplace transform. A simple long-range spin model having a nonconcave entropy is used to illustrate each method.Comment: v1: 22 pages, IOP style, 7 color figures, contribution for the JSTAT special issue on Long-range interacting systems. v2: Open problem and references added, minor typos corrected, close to published versio

    The Shape and Scale of Galactic Rotation from Cepheid Kinematics

    Get PDF
    A catalog of Cepheid variables is used to probe the kinematics of the Galactic disk. Radial velocities are measured for eight distant Cepheids toward l = 300; these new Cepheids provide a particularly good constraint on the distance to the Galactic center, R_0. We model the disk with both an axisymmetric rotation curve and one with a weak elliptical component, and find evidence for an ellipticity of 0.043 +/- 0.016 near the Sun. Using these models, we derive R_0 = 7.66 +/- 0.32 kpc and v_circ = 237 +/- 12 km/s. The distance to the Galactic center agrees well with recent determinations from the distribution of RR Lyrae variables, and disfavors most models with large ellipticities at the solar orbit.Comment: 36 pages, LaTeX, 10 figure

    Efeito de infestação de Tibraca limbativentris (Heteroptera: pentatomidae) na produção de arroz irrigado.

    Get PDF
    Experimentos de campo foram conduzidos durante os cultivos de 2006 e 2007 para determinar o impacto de infestação de T. limbativentris (percevejo-do-colmo) na produção de grãos de arroz irrigado.Resumo ID: 111-1
    corecore