40,489 research outputs found
Research in the application of spectral data to crop identification and assessment, volume 2
The development of spectrometry crop development stage models is discussed with emphasis on models for corn and soybeans. One photothermal and four thermal meteorological models are evaluated. Spectral data were investigated as a source of information for crop yield models. Intercepted solar radiation and soil productivity are identified as factors related to yield which can be estimated from spectral data. Several techniques for machine classification of remotely sensed data for crop inventory were evaluated. Early season estimation, training procedures, the relationship of scene characteristics to classification performance, and full frame classification methods were studied. The optimal level for combining area and yield estimates of corn and soybeans is assessed utilizing current technology: digital analysis of LANDSAT MSS data on sample segments to provide area estimates and regression models to provide yield estimates
Factorization and Endpoint Singularities in Heavy-to-Light decays
We prove a factorization theorem for heavy-to-light form factors. Our result
differs in several important ways from previous proposals. A proper separation
of scales gives hard kernels that are free of endpoint singularities. A general
procedure is described for including soft effects usually associated with the
tail of wavefunctions in hard exclusive processes. We give an operator
formulation of these soft effects using the soft-collinear effective theory,
and show that they appear at the same order in the power counting as the hard
spectator contribution.Comment: 5 pages, Added details on comparison with the literatur
Liquid sloshing in elastic containers
Coupled oscillations of elastic container partially filled with incompressible liqui
Microscopic calculation of the phonon dynamics of SrRuO compared with LaCuO
The phonon dynamics of the low-temperature superconductor SrRuO
is calculated quantitatively in linear response theory and compared with the
structurally isomorphic high-temperature superconductor LaCuO. Our
calculation corrects for a typical deficit of LDA-based calculations which
always predict a too large electronic -dispersion insufficient to
describe the c-axis response in the real materials. With a more realistic
computation of the electronic band structure the frequency and wavevector
dependent irreducible polarization part of the density response function is
determined and used for adiabatic and nonadiabatic phonon calculations. Our
analysis for SrRuO reveals important differences from the lattice
dynamics of - and -doped cuprates. Consistent with experimental evidence
from inelastic neutron scattering the anomalous doping related softening of the
strongly coupling high-frequency oxygen bond-stretching modes (OBSM) which is
generic for the cuprate superconductors is largely suppressed or completely
absent, respectively, depending on the actual value of the on-site Coulomb
repulsion of the Ru4d orbitals. Also the presence of a characteristic
-mode with a very steep dispersion coupling strongly with the
electrons is missing in SrRuO. Moreover, we evaluate the
possibility of a phonon-plasmon scenario for SrRuO which has been
shown recently to be realistic for LaCuO. In contrast to
LaCuO in SrRuO the very low lying plasmons are
overdamped along the c-axis.Comment: 30 pages, 16 figures, 4 tables, 33 reference
Dynamic charge inhomogenity in cuprate superconductors
The inelastic x-ray scattering spectrum for phonons of -symmetry
including the CuO bond-stretching phonon dispersion is analyzed by a Lorentz
fit in HgBaCuO and BiSrCuO, respectively, using
recently calculated phonon frequencies as input parameters. The resulting mode
frequencies of the fit are almost all in good agreement with the calculated
data. An exception is the second highest -branch compromising the
bond-stretching modes which disagrees in both compounds with the calculations.
This branch unlike the calculations shows an anomalous softening with a minimum
around the wavevector \vc{q}=\frac{2\pi}{a}(0.25, 0, 0). Such a disparity
with the calculated results, that are based on the assumption of an undisturbed
translation- and point group invariant electronic structure of the CuO plane,
indicates some {\it static} charge inhomogenities in the measured probes. Most
likely these will be charge stripes along the CuO bonds which have the
strongest coupling to certain longitudinal bond-stretching modes that in turn
selfconsistently induce corresponding {\it dynamic} charge inhomogenities. The
symmetry breaking by the mix of dynamic and static charge inhomogenities can
lead to a reconstruction of the Fermi surface into small pockets.Comment: 7 pages, 4 figure
Anomalous Metal-Insulator Transition in Filled Skutterudite CeOsSb
Anomalous metal-insulator transition observed in filled skutterudite
CeOsSb is investigated by constructing the effective tight-binding
model with the Coulomb repulsion between f electrons. By using the mean field
approximation, magnetic susceptibilities are calculated and the phase diagram
is obtained. When the band structure has a semimetallic character with small
electron and hole pockets at and H points, a spin density wave
transition with the ordering vector occurs due to the
nesting property of the Fermi surfaces. Magnetic field enhances this phase in
accord with the experiments.Comment: 4 pages, 4 figure
Phase Transitions in a Two-Component Site-Bond Percolation Model
A method to treat a N-component percolation model as effective one component
model is presented by introducing a scaled control variable . In Monte
Carlo simulations on , , and simple cubic
lattices the percolation threshold in terms of is determined for N=2.
Phase transitions are reported in two limits for the bond existence
probabilities and . In the same limits, empirical formulas
for the percolation threshold as function of one
component-concentration, , are proposed. In the limit a new
site percolation threshold, , is reported.Comment: RevTeX, 5 pages, 5 eps-figure
Effects of management practices on reflectance of spring wheat canopies
The effects of available soil moisture, planting date, nitrogen fertilization, and cultivar on reflectance of spring wheat (Triticum aestivum L.) canopies were investigated. Spectral measurements were acquired on eight dates throughout the growing season, along with measurements of crop maturity stage, leaf area index, biomass, plant height, percent soil cover, and soil moisture. Planting date and available soil moisture were the primary agronomic factors which affected reflectance of spring wheat canopies from tillering to maturity. Comparisons of treatments indicated that during the seedling and tillering stages planting date was associated with 36 percent and 85 percent of variation in red and near infrared reflectances, respectively. As the wheat headed and matured, less of the variation in reflectance was associated with planting date and more with available soil moisture. By mid July, soil moisture accounted for 73 percent and 69 percent of the variation in reflectance in red and near infrared bands, respectively. Differences in spectral reflectance among treatments were attributed to changes in leaf area index, biomass, and percent soil cover. Cultivar and N fertilization rate were associated with very little of the variation in the reflectance of these canopies
- …