109 research outputs found

    Chemical Evolution of Atmospheric Organic Carbon over Multiple Generations of Oxidation

    Get PDF
    The evolution of atmospheric organic carbon (OC) as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone, and oxidants. However, the full characterization of OC over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of -pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. While quantification of some early-generation products remains elusive, full carbon closure is achieved (within uncertainty) by the end of the experiments. This enables new insights into the effects of oxidation on OC properties (volatility, oxidation state, and reactivity), and the atmospheric lifecycle of OC. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs, volatile oxidized gases and low-volatility particulate matter

    Mechanochemical control of epidermal stem cell divisions by B-plexins

    Get PDF
    The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.Peer reviewe

    Alterations of hemostatic parameters in the early development of allogeneic hematopoietic stem cell transplantation-related complications

    Get PDF
    Thrombotic events are common and potentially fatal complications in patients receiving hematopoietic stem cell transplantation (HSCT). Early diagnosis is crucial but remains controversial. In this study, we investigated the early alterations of hemostatic parameters in allogeneic HSCT recipients and determined their potential diagnostic values in transplantation-related thrombotic complications and other post-HSCT events. Results from 107 patients with allogeneic HSCT showed higher levels of plasma plasminogen activator inhibitor-1 (PAI-1), fibrinogen, and tissue-plasminogen activator (t-PA) and a lower level of plasma protein C after transplantation. No change was found for prothrombin time, antithrombin III, d-dimer, and activated partial thromboplastin time following HSCT. Transplantation-related complications (TRCs) in HSCT patients were defined as thrombotic (n = 8), acute graft-versus-host disease (aGVHD, n = 45), and infectious (n = 38). All patients with TRCs, especially the patients with thrombotic complications, presented significant increases in the mean and maximum levels of PAI-1 during the observation period. Similarly, a high maximum t-PA level was found in the thrombotic group. In contrast, apparent lower levels of mean and minimum protein C were observed in the TRC patients, especially in the aGVHD group. Therefore, the hemostatic imbalance in the early phase of HSCT, reflecting prothrombotic state and endothelial injury due to the conditioning therapy or TRCs, might be useful in the differential diagnosis of the thrombotic complication from other TRCs

    Effect of wet curing duration on long-term performance of concrete in tidal zone of marine environment

    Get PDF
    A proper initial curing is a very simple and inexpensive alternative to improve concrete cover quality and accordingly extend the service life of reinforced concrete structures exposed to aggressive species. A current study investigates the effect of wet curing duration on chloride penetration in plain and blended cement concretes which subjected to tidal exposure condition in south of Iran for 5 years. The results show that wet curing extension preserves concrete against high rate of chloride penetration at early ages and decreases the difference between initial and long-term diffusion coefficients due to improvement of concrete cover quality. But, as the length of exposure period to marine environment increased the effects of initial wet curing became less pronounced. Furthermore, a relationship is developed between wet curing time and diffusion coefficient at early ages and the effect of curing length on time-to-corrosion initiation of concrete is addressed.Peer reviewedCivil and Environmental Engineerin

    Synthesis and characterization of conjugated polymers containing first row transition metal complexes

    No full text
    A series of novel conjugated polymers containing first row transition metal complexes have been synthesized and characterized. Metal complexes including Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) were incorporated into the bipyridine coordination sites of the conjugated polymer backbone. Upon inclusion of the metal complexes the absorption bands of the polymers were red-shifted and metal-to-ligand charge transfer (MLCT) bands were observed. The magnetic properties of these polymers were studied and the results showed that they all had high paramagnetic susceptibility; where applicable they were all stable in the high-spin state. Their large free spins and stability makes them promising as magnetic materials

    Conjugated polymers containing first row transition metal complexes

    No full text
    A series of conjugated polymers containing Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) complexes were synthesized and characterized. The magnetic properties of these polymers were studied and the results showed that they all had high paramagnetic susceptibility; where applicable they were all stable in the high-spin state
    • …
    corecore