6 research outputs found

    Profiling, the below ground biomass of an emergent macrophyte using an adapted ingrowth core method

    No full text
    In the context of our work exploring the role of Sparganium erectum as a physical ecosystem engineer, we aimed to test our hypothesis that the root and rhizome biomass of this species would be largely confined to the uppermost sediment layers, thereby having the effect of reinforcing newly deposited material and facilitating the growth of in-channel macrophyte stands and sediment accumulations. Detailed measurements of the below ground structures of linear emergent macrophytes, in terms of their biomass and architecture, are complicated by difficulties associated with sampling in the highly saturated sediments that these morphotypes typically occupy. In this paper, we describe the development of an adapted ingrowth core method, which allows the extrusion of an undisturbed root-soil matrix from highly saturated environments. The approach combines an ingrowth core, which is commonly used to measure fine-root production in forest topsoil, with an outer casing that facilitates the retention of a sample representative of field conditions, and a laboratory protocol that enables extrusion and measurement of biomass at different depth increments. The new approach enabled detailed depth profiling of S. erectum, and confirmed our hypothesis by demonstrating that root and rhizome biomass was predominantly located in the 10 cm of sediment closest to the sediment–water interface throughout our study

    Biomechanical properties of the emergent aquatic macrophyte Sparganium erectum: implications for fine sediment retention in low energy rivers

    No full text
    This paper is concerned with the biomechanical properties of the emergent aquatic macrophyte, Sparganium erectum. We present observations of adjustments in the physical characteristics and biomechanical properties of S. erectum during the growing season (April–November) from the River Blackwater, UK. When a pulling device is attached to plant stems to measure their resistance to uprooting, individual plants show remarkable strength in their above- and below-ground biomass (median stem strength when stems break away from the underground biomass, 78 N, median rhizome strength, 39 N) and high resistance to uprooting (median uprooting resistance when entire plants uproot, 114 N). This provides the potential for the species to protect and reinforce the generally soft, silty sediments that it often retains and within which its rhizomes and roots develop in lower energy river environments. There is a propensity for plant stems to break before the plant is uprooted at the beginning and end of the growth season, but for the stems to have sufficient strength in mid season for plant uprooting to dominate. This ensures that rhizome and root systems remain relatively undisturbed at times when the silty sediments in which they grow are poorly protected by above-ground biomass. In contrast, rhizome strength remains comparatively invariant through the growing season, supporting the plant's potential to have a protective/reinforcing effect on fine sediments through the winter when above ground biomass is absent

    Associations between the morphology and biomechanical properties of Sparganium erectum: Implications for survival and ecosystem engineering

    No full text
    Aquatic plants are able to alter their morphology under stressful hydrodynamic conditions to improve survival and growth; adjustments can include increases in below ground ‘anchoring’ biomass, or escape strategies such as extending the internodal length of rhizomes. Whilst research has demonstrated how macrophytes respond morphologically to stressful hydraulic conditions, there is little evidence of how these changes, particularly in below ground size and structure, influence the forces required to damage and dislodge aquatic plants. The aim of our study was to further establish the links between mechanical force (i.e. the forces required to uproot plants or cause stem breakage) and plant morphology in the common and widely distributed emergent species Sparganium erectum. Mechanical force was applied using a pulling device that consisted of a winch mounted on a metal frame that sat on the river bank, and from which a cable, with attached load cell, was connected to the stem of a S. erectum plant. We found strong associations between the below ground structures of the plant and the force at which it experiences failure. Below ground plant organs were important in determining the overall resilience of this species, with root length showing the strongest association with its ability to resist uprooting, whilst rhizomes had the longest seasonal influence on the force required to uproot the plant. Biomass measurements of below ground organs revealed rapid increases in root biomass early in the season, in contrast to the rhizome and corm biomass, which peaked at the end of the growth season. We argue that these results are demonstrative of a number of biomechanical and morphological traits that contribute to the pervasiveness of the species, its management challenges, and its function as an ecosystem engineer, whereby it alters the physical structure of river channels by deflecting flow and building large sediment accumulations. These traits include the presence of a mechanical fuse, rapid growth of roots early in the season and reproductive structures at the end of the season, which probably have a reinforcing effect on the surrounding sediment, and the high resistance of the species to uprooting, stem and rhizome breakag

    Quantifying the potential for flow to remove the emergent aquatic macrophyte Sparganium erectum from the margins of low-energy rivers

    No full text
    The emergent macrophyte species Sparganium erectum occurs commonly at the margins of low- to medium- energy river systems across the northern temperate zone. It is considered as an invasive species along low-energy water courses in many parts of the US and Australia. The life-cycle and biomechanical properties of this species make it very well adapted to such environments, allowing rapid growth and sediment trapping, such that encroachment into the channel occurs as the growing season progresses. The widespread growth of species such as S. erectum is therefore of particular concern, when considering the flood risk potential of many rivers. As such, the conditions required for survival or uprooting and scouring of this plant are of interest, as are the times of the year and processes by which these plants spread to increase the size of current stands, and to form new stands. It is known that S. erectum reproduces by several vegetative methods including rhizome growth, dispersal of detached rhizomes, and relocation of entire plants. However, the mechanisms and flow conditions necessary for uprooting or scouring of entire plants, and the separation of fragments of this species, at different times of the year, are largely unknown. The aim of this paper is to model the uprooting resistance of S. erectum plants as reported by Liffen et al. (in press), and to investigate the manner by which this species is adapted to proliferate in low-energy, low-gradient streams. The results presented here show that Monte Carlo simulations using the RipRoot root-reinforcement model can be used to accurately model plant pullout forces, rhizome interconnectivity and length changes for S. erectum plants throughout the growing season. Analysis presented here also suggests that plant uprooting forces are several orders of magnitude larger than potential drag forces that could act on the S. erectum plants at the River Blackwater site modeled, and even at sites with much higher channel slopes. This result suggests that the ability of these plants to thrive in low-energy rivers, but not in higher-energy river environments, is less related to driving forces causing drag on the plants, and more related to the energy conditions controlling erosion and deposition of the fine substrate materials these plants thrive in. The critical shear stress of the fine within-vegetation material was shown here to only be exceeded by the average boundary shear stress within the vegetation, during winter months when above-ground biomass and thus Manning's n values were at their lowest. For example, during March and April average boundary shear stress was predicted to exceed critical boundary shear stress for 6% of the time. Erodibility measurements from jet-tests conducted at the River Blackwater fieldsite suggested that this excess in boundary shear stress could result in potential vertical scour of up to 0.09 m in both March and April. During the majority of the growing season sediment trapping rather than erosion dominated, with enough deposition occurring over the summer to protect all but the shallowest, weakest and least interconnected rhizomes and plants from being scoured in the winter months. The balance between erosion and deposition within stands of S. erectum in these low-energy environments therefore allows for the maintenance of established stands of vegetation, whilst still allowing for scouring of weaker S. erectum plants that can establish previously un-colonized channel margins further downstream
    corecore