16 research outputs found

    Determination of migration monomer styrene from GPPS (general purpose polystyrene) and HIPS (high impact polystyrene) cups to hot drinks

    Get PDF
    In this study, 162 samples were analysed for monomer styrene content with using high performance liquid chromatography (HPLC) method in hot tea, milk, cocoa milk. The monomer styrene content, expressed in μg/l of drink and the level of migration of styrene monomer were varied from 0.61 to 8.15 for hot tea, from 0.65 to 8.30 for hot milk, from 0.71 to 8.65 for hot cocoa milk in GPPS (general purpose polystyrene), from 0.48 to 6.85 for hot tea, from 0.61 to 7.65 for hot milk, from 0.72 to 7.78 for hot cocoa milk in HIPS (high performance polystyrene) cups in different temperatures and times. The estimated limit of detection of (HPLC) method for all samples was 0.001 mg/kg. There is linear regression for styrene monomer from 1 to 10 ng/ml. Several samples spiked with a known amount of styrene monomer. The results of the recovery in study for styrene monomer were determinate to be mean, 96.1 ± 1.92 to 99.7 ± 1.15%. The results of this study indicate that styrene monomer from polystyrene disposable into hot and fat drinks was migrated and this migration was highly dependent on fat content and temperature of drinks. The derived concentration of styrene monomer in this study was above the EPA (Environmental protection agency) recommended level, especially in MCLG (Maximum contaminant level goal) standard. More study is needed to further elucidate this finding

    Evaluation of migration models that might be used in support of regulations for food-contact plastics

    No full text
    Materials and articles intended to come into contact with food must be shown to be safe because they might interact with food during processing, storage and the transportation of foodstuffs. Framework Directive 89/109/EEC and its related specific Directives provide this safety basis for the protection of the consumer against inadmissible chemical contamination from food-contact materials. Recently, the European Commission charged an international group of experts to demonstrate that migration modelling can be regarded as a valid and reliable tool to calculate 'reasonable worst-case' migration rates from the most important food-contact plastics into the European Union official food simulants. The paper summarizes the main steps followed to build up and validate a migration estimation model that can be used, for a series of plastic food-contact materials and migrants, for regulatory purposes. Analytical solutions of the diffusion equation in conjunction with an 'upper limit' equation for the migrant diffusion coefficient, DP, and the use of 'worst case' partitioning coefficients KP,F were used in the migration model. The results obtained were then validated, at a confidence level of 95%, by comparison with the available experimental evidence. The successful accomplishment of the goals of this project is reflected by the fact that in Directive 2002/72/EC, the European Commission included the mathematical modelling as an alternative tool to determine migration rates for compliance purposes. © 2005 Taylor & Francis Group Ltd
    corecore