85 research outputs found

    Bilateral polymicrogyria associated with dystonia: A new neurogenetic syndrome?

    Get PDF
    The clinical presentation of bilateral perisylvian polymicrogyria (PMG) is highly variable, including oromotor dysfunction, epilepsy, intellectual disability, and pyramidal signs. Extrapyramidal features are extremely rare. We present four apparently unrelated patients with a unique association of PMG with dystonia. The clinical, genetic, and radiologic features are described and possible mechanisms of dystonia are discussed. All patients were female and two were born to consanguineous families. All presented with early childhood onset dystonia. Other neurologic symptoms and signs classically seen in bilateral perisylvian PMG were observed, including oromotor dysfunction and speech abnormalities ranging from dysarthria to anarthria (4/4), pyramidal signs (3/4), hypotonia (3/4), postnatal microcephaly (1/4), and seizures (1/4). Neuroimaging showed a unique pattern of bilateral PMG with an infolded cortex originating primarily from the perisylvian region in three out of four patients. Whole exome sequencing was performed in two out of four patients and did not reveal pathogenic variants in known genes for cortical malformations or movement disorders. The dystonia seen in our patients is not described in bilateral PMG and suggests an underlying mechanism of impaired connectivity within the motor network or compromised cortical inhibition. The association of bilateral PMG with dystonia in our patients may represent a new neurogenetic disorder

    Building Bridges Between the Clinic and the Laboratory: A Meeting Review – Brain Malformations: A Roadmap for Future Research

    Get PDF
    In the middle of March 2019, a group of scientists and clinicians (as well as those who wear both hats) gathered in the green campus of the Weizmann Institute of Science to share recent scientific findings, to establish collaborations, and to discuss future directions for better diagnosis, etiology modeling and treatment of brain malformations. One hundred fifty scientists from twenty-two countries took part in this meeting. Thirty-eight talks were presented and as many as twenty-five posters were displayed. This review is aimed at presenting some of the highlights that the audience was exposed to during the three-day meeting

    Detailed Analysis of <em>ITPR1 </em>Missense Variants Guides Diagnostics and Therapeutic Design

    Get PDF
    \ua9 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Background: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3) receptor type 1 (IP3R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. Objectives: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. Methods: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. Results: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3-binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype–phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. Conclusions: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. \ua9 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies

    Get PDF
    Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child trios revealed more than 290 candidate genes in which only a single individual had a de novo variant. We sought to identify additional pathogenic variants in a subset (n = 27) of these genes via targeted sequencing in an unsolved cohort of 531 individuals with a diverse range of EEs. We report 17 individuals with pathogenic variants in seven of the 27 genes, defining a genetic etiology in 3.2% of this unsolved cohort. Our results provide definitive evidence that de novo mutations in SLC1A2 and CACNA1A cause specific EEs and expand the compendium of clinically relevant genotypes for GABRB3. We also identified EEs caused by genetic variants in ALG13, DNM1, and GNAO1 and report a mutation in IQSEC2. Notably, recurrent mutations accounted for 7/17 of the pathogenic variants identified. As a result of high-depth coverage, parental mosaicism was identified in two out of 14 cases tested with mutant allelic fractions of 5%–6% in the unaffected parents, carrying significant reproductive counseling implications. These results confirm that dysregulation in diverse cellular neuronal pathways causes EEs, and they will inform the diagnosis and management of individuals with these devastating disorders

    De novo mutations in GRIN1 cause extensive bilateral polymicrogyria

    Get PDF
    Polymicrogyria is a malformation of cortical development. The aetiology of polymicrogyria remains poorly understood. Using whole-exome sequencing we found de novo heterozygous missense GRIN1 mutations in 2 of 57 parent-offspring trios with polymicrogyria. We found nine further de novo missense GRIN1 mutations in additional cortical malformation patients. Shared features in the patients were extensive bilateral polymicrogyria associated with severe developmental delay, postnatal microcephaly, cortical visual impairment and intractable epilepsy. GRIN1 encodes GluN1, the essential subunit of the N-methyl-d-aspartate receptor. The polymicrogyria-associated GRIN1 mutations tended to cluster in the S2 region (part of the ligand-binding domain of GluN1) or the adjacent M3 helix. These regions are rarely mutated in the normal population or in GRIN1 patients without polymicrogyria. Using two-electrode and whole-cell voltage-clamp analysis, we showed that the polymicrogyria-associated GRIN1 mutations significantly alter the in vitro activity of the receptor. Three of the mutations increased agonist potency while one reduced proton inhibition of the receptor. These results are striking because previous GRIN1 mutations have generally caused loss of function, and because N-methyl-d-aspartate receptor agonists have been used for many years to generate animal models of polymicrogyria. Overall, our results expand the phenotypic spectrum associated with GRIN1 mutations and highlight the important role of N-methyl-d-aspartate receptor signalling in the pathogenesis of polymicrogyria

    Clinical presentation and natural history of infantile-onset ascending spastic paralysis from three families with an ALS2 founder variant.

    Get PDF
    Biallelic mutations of the alsin Rho guanine nucleotide exchange factor (ALS2) gene cause a group of overlapping autosomal recessive neurodegenerative disorders including infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (JALS/ALS2), caused by retrograde degeneration of the upper motor neurons of the pyramidal tracts. Here, we describe 11 individuals with IAHSP, aged 2-48 years, with IAHSP from three unrelated consanguineous Iranian families carrying the homozygous c.1640+1G>A founder mutation in ALS2. Three affected siblings from one family exhibit generalized dystonia which has not been previously described in families with IAHSP and has only been reported in three unrelated consanguineous families with JALS/ALS2. We report the oldest individuals with IAHSP to date and provide evidence that these patients survive well into their late 40s with preserved cognition and normal eye movements. Our study delineates the phenotypic spectrum of IAHSP and ALS2-related disorders and provides valuable insights into the natural disease course

    Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

    Get PDF
    A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD
    • …
    corecore