147 research outputs found

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc

    Quadratic Models for Portfolio Credit Risk with Shot-Noise Effects

    Full text link
    We propose a reduced form model for default that allows us to derive closed-form solutions to all the key ingredients in credit risk modeling: risk-free bond prices, defaultable bond prices (with and without stochastic recovery) and probabilities of survival. We show that all these quantities can be represented in general exponential quadratic forms, despite the fact that the intensity is allowed to jump producing shot-noise effects. In addition, we show how to price defaultable digital puts, CDSs and options on defaultable bonds. Further on, we study a model for portfolio credit risk where we consider both firm specific and systematic risks. The model generalizes the attempt from Duffie and Garleanu (2001). We find that the model produces realistic default correlation and clustering of defaults. Then, we show how to price first-to-default swaps, CDOs, and draw the link to currently proposed credit indices

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
    corecore