147 research outputs found
A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function
In the present paper, we derive a closed-form solution of the multi-period
portfolio choice problem for a quadratic utility function with and without a
riskless asset. All results are derived under weak conditions on the asset
returns. No assumption on the correlation structure between different time
points is needed and no assumption on the distribution is imposed. All
expressions are presented in terms of the conditional mean vectors and the
conditional covariance matrices. If the multivariate process of the asset
returns is independent it is shown that in the case without a riskless asset
the solution is presented as a sequence of optimal portfolio weights obtained
by solving the single-period Markowitz optimization problem. The process
dynamics are included only in the shape parameter of the utility function. If a
riskless asset is present then the multi-period optimal portfolio weights are
proportional to the single-period solutions multiplied by time-varying
constants which are depending on the process dynamics. Remarkably, in the case
of a portfolio selection with the tangency portfolio the multi-period solution
coincides with the sequence of the simple-period solutions. Finally, we compare
the suggested strategies with existing multi-period portfolio allocation
methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process
dynamics and the analysis of increasing horizon are included in the
simulation study, under revision in Annals of Operations Researc
Quadratic Models for Portfolio Credit Risk with Shot-Noise Effects
We propose a reduced form model for default that allows us to derive closed-form solutions to all the key ingredients in credit risk modeling: risk-free bond prices, defaultable bond prices (with and without stochastic recovery) and probabilities of survival. We show that all these quantities can be represented in general exponential quadratic forms, despite the fact that the intensity is allowed to jump producing shot-noise effects. In addition, we show how to price defaultable digital puts, CDSs and options on defaultable bonds. Further on, we study a model for portfolio credit risk where we consider both firm specific and systematic risks. The model generalizes the attempt from Duffie and Garleanu (2001). We find that the model produces realistic default correlation and clustering of defaults. Then, we show how to price first-to-default swaps, CDOs, and draw the link to currently proposed credit indices
Non-Standard Errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
Recommended from our members
Non-standard errors
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
- …