261 research outputs found
TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro
A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been
performed using the Milagro Gamma Ray Observatory. Eight candidate sources of
TeV emission are detected with pre-trials significance in the
region of Galactic longitude and latitude
. Four of these sources, including the Crab nebula
and the recently published MGRO J2019+37, are observed with significances
after accounting for the trials involved in searching the 3800
square degree region. All four of these sources are also coincident with EGRET
sources. Two of the lower significance sources are coincident with EGRET
sources and one of these sources is Geminga. The other two candidates are in
the Cygnus region of the Galaxy. Several of the sources appear to be spatially
extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux
to nearly as bright as the Crab.Comment: Submitted to Ap
Search for very high energy gamma-rays from WIMP annihilations near the Sun with the Milagro Detector
The neutralino, the lightest stable supersymmetric particle, is a strong
theoretical candidate for the missing astronomical ``dark matter''. A profusion
of such neutralinos can accumulate near the Sun when they lose energy upon
scattering and are gravitationally captured. Pair-annihilations of those
neutralinos may produce very high energy (VHE, above ) gamma-rays.
Milagro is an air shower array which uses the water Cherenkov technique to
detect extensive air showers and is capable of observing VHE gamma-rays from
the direction of the Sun with an angular resolution of . Analysis
of Milagro data with an exposure to the Sun of 1165 hours presents the first
attempt to detect TeV gamma-rays produced by annihilating neutralinos captured
by the Solar system and shows no statistically significant signal. Resulting
limits that can be set on gamma-ray flux due to near-Solar neutralino
annihilations and on neutralino cross-section are presented
Milagro Constraints on Very High Energy Emission from Short Duration Gamma-Ray Bursts
Recent rapid localizations of short, hard gamma-ray bursts (GRBs) by the
Swift and HETE satellites have led to the observation of the first afterglows
and the measurement of the first redshifts from this type of burst. Detection
of >100 GeV counterparts would place powerful constraints on GRB mechanisms.
Seventeen short duration (< 5 s) GRBs detected by satellites occurred within
the field of view of the Milagro gamma-ray observatory between 2000 January and
2006 December. We have searched the Milagro data for >100 GeV counterparts to
these GRBs and find no significant emission correlated with these bursts. Due
to the absorption of high-energy gamma rays by the extragalactic background
light (EBL), detections are only expected for redshifts less than ~0.5. While
most long duration GRBs occur at redshifts higher than 0.5, the opposite is
thought to be true of short GRBs. Lack of a detected VHE signal thus allows
setting meaningful fluence limits. One GRB in the sample (050509b) has a likely
association with a galaxy at a redshift of 0.225, while another (051103) has
been tentatively linked to the nearby galaxy M81. Fluence limits are corrected
for EBL absorption, either using the known measured redshift, or computing the
corresponding absorption for a redshift of 0.1 and 0.5, as well as for the case
of z=0.Comment: Accepted for publication in the Astrophysical Journa
Observation and Spectral Measurements of the Crab Nebula with Milagro
The Crab Nebula was detected with the Milagro experiment at a statistical
significance of 17 standard deviations over the lifetime of the experiment. The
experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air
showers by observing the particle footprint reaching the ground. The fraction
of detectors recording signals from photons at the ground is a suitable proxy
for the energy of the primary particle and has been used to measure the photon
energy spectrum of the Crab Nebula between ~1 and ~100 TeV. The TeV emission is
believed to be caused by inverse-Compton up-scattering scattering of ambient
photons by an energetic electron population. The location of a TeV steepening
or cutoff in the energy spectrum reveals important details about the underlying
electron population. We describe the experiment and the technique for
distinguishing gamma-ray events from the much more-abundant hadronic events. We
describe the calculation of the significance of the excess from the Crab and
how the energy spectrum is fit. The fit is consistent with values measured by
IACTs between 1 and 20 TeV. Fixing the spectral index to values that have been
measured below 1 TeV by IACT experiments (2.4 to 2.6), the fit to the Milagro
data suggests that Crab exhibits a spectral steepening or cutoff between about
20 to 40 TeV.Comment: Submitted to Astrophysical Journa
Discovery of Localized Regions of Excess 10-TeV Cosmic Rays
An analysis of 7 years of Milagro data performed on a 10-degree angular scale
has found two localized regions of excess of unknown origin with greater than
12 sigma significance. Both regions are inconsistent with gamma-ray emission
with high confidence. One of the regions has a different energy spectrum than
the isotropic cosmic-ray flux at a level of 4.6 sigma, and it is consistent
with hard spectrum protons with an exponential cutoff, with the most
significant excess at ~10 TeV. Potential causes of these excesses are explored,
but no compelling explanations are found.Comment: Submitted to PhysRevLet
A Measurement of the Spatial Distribution of Diffuse TeV Gamma Ray Emission from the Galactic Plane with Milagro
Diffuse -ray emission produced by the interaction of cosmic-ray
particles with matter and radiation in the Galaxy can be used to probe the
distribution of cosmic rays and their sources in different regions of the
Galaxy. With its large field of view and long observation time, the Milagro
Gamma Ray Observatory is an ideal instrument for surveying large regions of the
Northern Hemisphere sky and for detecting diffuse -ray emission at very
high energies. Here, the spatial distribution and the flux of the diffuse
-ray emission in the TeV energy range with a median energy of 15 TeV
for Galactic longitudes between 30 and 110 and between
136 and 216 and for Galactic latitudes between -10 and
10 are determined. The measured fluxes are consistent with predictions
of the GALPROP model everywhere except for the Cygnus region
(). For the Cygnus region, the flux is twice the
predicted value. This excess can be explained by the presence of active cosmic
ray sources accelerating hadrons which interact with the local dense
interstellar medium and produce gamma rays through pion decay.Comment: 15 pages, 3 figures, accepted by Ap
Novel and Conserved Protein Macoilin Is Required for Diverse Neuronal Functions in Caenorhabditis elegans
Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity
Disappearance of back-to-back high hadron correlations in central Au+Au collisions at = 200 GeV
Azimuthal correlations for large transverse momentum charged hadrons have
been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and
p+p collisions at = 200 GeV. The small-angle correlations
observed in p+p collisions and at all centralities of Au+Au collisions are
characteristic of hard-scattering processes already observed in elementary
collisions. A strong back-to-back correlation exists for p+p and peripheral Au
+ Au. In contrast, the back-to-back correlations are reduced considerably in
the most central Au+Au collisions, indicating substantial interaction as the
hard-scattered partons or their fragmentation products traverse the medium.Comment: submitted to Phys. Rev. Let
Azimuthal anisotropy and correlations in the hard scattering regime at RHIC
Azimuthal anisotropy () and two-particle angular correlations of high
charged hadrons have been measured in Au+Au collisions at
=130 GeV for transverse momenta up to 6 GeV/c, where hard
processes are expected to contribute significantly. The two-particle angular
correlations exhibit elliptic flow and a structure suggestive of fragmentation
of high partons. The monotonic rise of for GeV/c is
consistent with collective hydrodynamical flow calculations. At \pT>3 GeV/c a
saturation of is observed which persists up to GeV/c.Comment: As publishe
- …