1,320 research outputs found
Effect of Phase Shift in Shape Changing Collision of Solitons in Coupled Nonlinear Schroedinger Equations
Soliton interactions in systems modelled by coupled nonlinear Schroedinger
(CNLS) equations and encountered in phenomena such as wave propagation in
optical fibers and photorefractive media possess unusual features : shape
changing intensity redistributions, amplitude dependent phase shifts and
relative separation distances. We demonstrate these properties in the case of
integrable 2-CNLS equations. As a simple example, we consider the stationary
two-soliton solution which is equivalent to the so-called partially coherent
soliton (PCS) solution discussed much in the recent literature.Comment: 11 pages, revtex4,Two eps figures. European Journal of Physics B (to
appear
Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schr\"odinger equations
Mixed type (bright-dark) soliton solutions of the integrable N-coupled
nonlinear Schr{\"o}dinger (CNLS) equations with mixed signs of focusing and
defocusing type nonlinearity coefficients are obtained by using Hirota's
bilinearization method. Generally, for the mixed N-CNLS equations the bright
and dark solitons can be split up in ways. By analysing the collision
dynamics of these coupled bright and dark solitons systematically we point out
that for , if the bright solitons appear in at least two components,
non-trivial effects like onset of intensity redistribution, amplitude dependent
phase-shift and change in relative separation distance take place in the bright
solitons during collision. However their counterparts, the dark solitons,
undergo elastic collision but experience the same amplitude dependent
phase-shift as that of bright solitons. Thus in the mixed CNLS system there
co-exist shape changing collision of bright solitons and elastic collision of
dark solitons with amplitude dependent phase-shift, thereby influencing each
other mutually in an intricate way.Comment: Accepted for publication in Physical Review
Nanoparticle transport in saturated porous medium using magnetic resonance imaging
Transport study of nanoparticle (NP) through matrix flow dominated aquifer sand and soils have significant influence in natural systems. To quantify the transport behaviour, magnetic resonance imaging (MRI) was used to image the iron oxide based nanoparticle, Molday ION (carboxyl terminated) through saturated sandstone rock core. T2-weighted images were acquired and the changes in image intensity were calibrated to get a quantitative concentration profiles at various time intervals. These profiles were evaluated through CXTFIT transport model to estimate the transport parameters. These parameters are estimated at various points along the length of the column while classical breakthrough curve analysis cannot provide these details. NP–surface interactions were investigated using DLVO (Derjaguin–Landau–Verwey–Overbeek) theory. The dispersion coefficients (2.55–1.21 × 10−7 m2/s) were found to be decrease with distance, deposition rate constant k (6.70–9.13 × 10−4 (1/s)) and fast deposition rate constant kfast (4.32–8.79 × 10−2 (1/s)) were found to be increase with distance. These parameter variations over length will have a scaling up impact in developing transport models for environmental remediation and risk assessment schemes
Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit
We have identified the three prominent routes, namely Heagy-Hammel,
fractalization and intermittency routes, and their mechanisms for the birth of
strange nonchaotic attractors (SNAs) in a quasiperiodically forced electronic
system constructed using a negative conductance series LCR circuit with a diode
both numerically and experimentally. The birth of SNAs by these three routes is
verified from both experimental and their corresponding numerical data by
maximal Lyapunov exponents, and their variance, Poincar\'e maps, Fourier
amplitude spectrum, spectral distribution function and finite-time Lyapunov
exponents. Although these three routes have been identified numerically in
different dynamical systems, the experimental observation of all these
mechanisms is reported for the first time to our knowledge and that too in a
single second order electronic circuit.Comment: 21 figure
Application of Butterworth filter for fault diagnosis on journal bearing
Journal bearings are widely used to support the shaft of industrial machinery with heavy loads, such as compressors, turbines and centrifugal pumps. The major problem in journal bearing is catastrophic failure due to corrosion and erosion, results in economic loss and creates high safety risks. So, it is necessary to provide condition monitoring technique to detect and diagnose failures, to achieve cost benefits to industry. The method of vibration signal processing using filter analysis for condition monitoring and fault diagnosis has been evolving at a very rapid rate in recent years. The use of filter technique has proven to be a very powerful and reliable tool for fault detection and its most important attribute is its ability to efficiently detect non-stationary, non-periodic, transient features of the vibration signal. In this paper the application of Butterworth filter for processing vibration signal to detect faults in journal bearing is presented. A bearing testing apparatus is used for experimental studies to obtain vibration signal from a healthy bearing and a fault bearing. The signal processing methods using Fast Fourier Transform, enveloped filtered power spectrum based on Butterworth filter method and their implementation are presented. Further applications of Artificial Neural Network (ANN) are investigated as a model for automated fault diagnosis
- …