103,921 research outputs found
Numerical studies of baroclinic instability at small Richardson number
Baroclinic instability at small Richardson number consists of competition between symmetric (Solberg) modes, zonal (Eady) modes, and possibly other modes whose orientation is neither symmetric nor zonal. In FY-84, a study of the fully nonlinear development and energetics of the symmetric modes was completed. The nonlinear effects were quite strong and, in some senses, unexpected. Secondly, a study of the dependency of the energetics of the symmetric modes upon the physical parameters was completed
A preliminary study of numerical simulation of thermosolutal convection of interest to crystal growth
Calculations were performed with computer models using three types of finite difference methods of thermosolutal convection: horizontal heating of a container filled with a stably stratified solution, finger convection in a container, and finger convection in a horizontally infinite channel. The importance of including thermosolutal convection in models of crystal growth is emphasized, and the difficulties in doing so are demonstrated. It is pointed out that these difficulties, due primarily to the fine structure of the convection, may be partly overcome by the use of fine grids and implicit time stepping methods
X-ray reverberation in NLS1
Reverberation from scattering material around the black hole in active
galactic nuclei is expected to produce a characteristic signature in a Fourier
analysis of the time delays between directly-viewed continuum emission and the
scattered light. Narrow-line Seyfert 1 galaxies (NLS1) are highly variable at
X-ray energies, and are ideal candidates for the detection of X-ray
reverberation. We show new analysis of a small sample of NLS1 that clearly
shows the expected time-delay signature, providing strong evidence for the
existence of a high covering fraction of scattering and absorbing material a
few tens to hundreds of gravitational radii from the black hole. We also show
that an alternative interpretation of time delays in the NLS1 1H0707-495, as
arising about one gravitational radius from the black hole, is strongly
disfavoured in an analysis of the energy-dependence of the time delays.Comment: Published online in Proceedings of Science, "Narrow-line Seyfert 1
Galaxies and their place in the Universe", held in Milan, Italy April 4-6,
201
The hard X-ray spectrum of NGC 1365: scattered light, not black hole spin
Active Galactic Nuclei (AGN) show excess X-ray emission above 10 keV compared
with extrapolation of spectra from lower energies. Risaliti et al. have
recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365,
concluding that the hard excess most likely arises from Compton-scattered
reflection of X-rays from an inner accretion disk close to the black hole.
Their analysis disfavored a model in which the hard excess arises from a high
column density of circumnuclear gas partially covering a primary X-ray source,
despite such components being required in the NGC 1365 data below 10 keV. Using
a Monte Carlo radiative transfer approach, we demonstrate that this conclusion
is invalidated by (i) use of slab absorption models, which have unrealistic
transmission spectra for partial covering gas, (ii) neglect of the effect of
Compton scattering on transmitted spectra and (iii) inadequate modeling of the
spectrum of scattered X-rays. The scattered spectrum is geometry dependent and,
for high global covering factors, may dominate above 10 keV. We further show
that, in models of circumnuclear gas, the suppression of the observed hard
X-ray flux by reprocessing may be no larger than required by the `light
bending' model invoked for inner disk reflection, and the expected emission
line strengths lie within the observed range. We conclude that the
time-invariant `red wing' in AGN X-ray spectra is probably caused by continuum
transmitted through and scattered from circumnuclear gas, not by highly
redshifted line emission, and that measurement of black hole spin is not
possible.Comment: Revised version, accepted for publication by Ap.J. Letter
Laboratory studies of baroclinic instability at small Richardson number
As part of the support program for the Atmospheric General Circulation Experiment, laboratory studies of baroclinic and other convective instabilities were performed for a thin layer of fluid between thermally conducting horizontal discs. There were three types of modes identified. The first has a spiral-arm appearance, and exists for large enough horizontal thermal forcing, weak enough static stability, and large enough rotation. The source of this wave is shown to be the Eady mode of instability. The second mode is due to convective instability in the thermal boundary layers which exist due to the thermally conducting horizontal boundaries. Finally, for strong enough negative static stability, thermal convection of the Benard type appears. The most significant result is that the symmetric (Solberg) mode was not found, even though the infinite-plane theory predicts this mode under certain experimental conditions
X-ray Signatures of Circumnuclear Gas in AGN
X-ray spectra of AGN are complex. X-ray absorption and emission features
trace gas covering a wide range of column densities and ionization states. High
resolution spectra show the absorbing gas to be outflowing, perhaps in the form
of an accretion disk wind. The absorbing complex shapes the form of the X-ray
spectrum while X-ray reverberation and absorption changes explain the spectral
and timing behaviour of AGN. We discuss recent progress, highlighting some new
results and reviewing the implications that can be drawn from the data.Comment: Proceedings of the conference "Suzaku 2011, Exploring the X-ray
Universe: Suzaku and Beyond
Geometry and General Relativity in the Groupoid Model with a Finite Structure Group
In a series of papers we proposed a model unifying general relativity and
quantum mechanics. The idea was to deduce both general relativity and quantum
mechanics from a noncommutative algebra defined on a
transformation groupoid determined by the action of the Lorentz group
on the frame bundle over space-time . In the present work,
we construct a simplified version of the gravitational sector of this model in
which the Lorentz group is replaced by a finite group and the frame bundle
is trivial . The model is fully computable. We define the
Einstein-Hilbert action, with the help of which we derive the generalized
vacuum Einstein equations. When the equations are projected to space-time
(giving the "general relativistic limit"), the extra terms that appear due to
our generalization can be interpreted as "matter terms", as in
Kaluza-Klein-type models. To illustrate this effect we further simplify the
metric matrix to a block diagonal form, compute for it the generalized Einstein
equations and find two of their "Friedmann-like" solutions for the special case
when . One of them gives the flat Minkowski space-time (which,
however, is not static), another, a hyperbolic, linearly expanding universe.Comment: 32 page
Models of q-algebra representations: Matrix elements of the q-oscillator algebra
This article continues a study of function space models of irreducible representations of q analogs of Lie enveloping algebras, motivated by recurrence relations satisfied by q-hypergeometric functions. Here a q analog of the oscillator algebra (not a quantum algebra) is considered. It is shown that various q analogs of the exponential function can be used to mimic the exponential mapping from a Lie algebra to its Lie group and the corresponding matrix elements of the ``group operators'' on these representation spaces are computed. This ``local'' approach applies to more general families of special functions, e.g., with complex arguments and parameters, than does the quantum group approach. It is shown that the matrix elements themselves transform irreducibly under the action of the algebra. q analogs of a formula are found for the product of two hypergeometric functions 1F1 and the product of a 1F1 and a Bessel function. They are interpreted here as expansions of the matrix elements of a ``group operator'' (via the exponential mapping) in a tensor product basis (for the tensor product of two irreducible oscillator algebra representations) in terms of the matrix elements in a reduced basis. As a by-product of this analysis an interesting new orthonormal basis was found for a q analog of the Bargmann–Segal Hilbert space of entire functions
Seasonal Variability In The Ionosphere Of Uranus
Infrared ground-based observations using IRTF, UKIRT, and Keck II of Uranus have been analyzed as to identify the long-term behavior of the H-3(+) ionosphere. Between 1992 and 2008 there are 11 individual observing runs, each recording emission from the H-3(+) Q branch emission around 4 mu m through the telluric L' atmospheric window. The column-averaged rotational H-3(+) temperature ranges between 715 K in 1992 and 534 K in 2008, with the linear fit to all the run-averaged temperatures decreasing by 8 K year(-1). The temperature follows the fractional illumination curve of the planet, declining from solstice (1985) to equinox (2007). Variations in H-3(+) column density do not appear to be correlated to either solar cycle phase or season. The radiative cooling by H-3(+) is similar to 10 times larger than the ultraviolet solar energy being injected to the atmosphere. Despite the fact that the solar flux alone is incapable of heating the atmosphere to the observed temperatures, the geometry with respect to the Sun remains an important driver in determining the thermospheric temperature. Therefore, the energy source that heats the thermosphere must be linked to solar mechanisms. We suggest that this may be in the form of conductivity created by solar ionization of atmospheric neutrals and/or seasonally dependent magnetospherically driven current systems.STFC PP/E/000983/1, ST/G0022223/1RCUKGemini ObservatoryNational Aeronautics and Space Administration (NASA) NXX08A043G, NNX08AE38AAstronom
- …