31 research outputs found

    Application of amino acid occurrence for discriminating different folding types of globular proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the three-dimensional structure of a protein from its amino acid sequence is a long-standing goal in computational/molecular biology. The discrimination of different structural classes and folding types are intermediate steps in protein structure prediction.</p> <p>Results</p> <p>In this work, we have proposed a method based on linear discriminant analysis (LDA) for discriminating 30 different folding types of globular proteins using amino acid occurrence. Our method was tested with a non-redundant set of 1612 proteins and it discriminated them with the accuracy of 38%, which is comparable to or better than other methods in the literature. A web server has been developed for discriminating the folding type of a query protein from its amino acid sequence and it is available at http://granular.com/PROLDA/.</p> <p>Conclusion</p> <p>Amino acid occurrence has been successfully used to discriminate different folding types of globular proteins. The discrimination accuracy obtained with amino acid occurrence is better than that obtained with amino acid composition and/or amino acid properties. In addition, the method is very fast to obtain the results.</p

    Mth10b, a Unique Member of the Sac10b Family, Does Not Bind Nucleic Acid

    Get PDF
    The Sac10b protein family is regarded as a group of nucleic acid-binding proteins that are highly conserved and widely distributed within archaea. All reported members of this family are basic proteins that exist as homodimers in solution and bind to DNA and/or RNA without apparent sequence specificity in vitro. Here, we reported a unique member of the family, Mth10b from Methanobacterium thermoautotrophicum ΔH, whose amino acid sequence shares high homology with other Sac10b family proteins. However, unlike those proteins, Mth10b is an acidic protein; its potential isoelectric point is only 4.56, which is inconsistent with the characteristics of a nucleic acid-binding protein. In this study, Mth10b was expressed in Escherichia coli and purified using a three-column chromatography purification procedure. Biochemical characterization indicated that Mth10b should be similar to typical Sac10b family proteins with respect to its secondary and tertiary structure and in its preferred oligomeric forms. However, an electrophoretic mobility shift analysis (EMSA) showed that neither DNA nor RNA bound to Mth10b in vitro, indicating that either Mth10b likely has a physiological function that is distinct from those of other Sac10b family members or nucleic acid-binding ability may not be a fundamental factor to the actual function of the Sac10b family

    Molecular Mechanism Underlying the Interaction of Typical Sac10b Family Proteins with DNA

    Get PDF
    The Sac10b protein family is regarded as a family of DNA-binding proteins that is highly conserved and widely distributed within the archaea. Sac10b family members are typically small basic dimeric proteins that bind to DNA with cooperativity and no sequence specificity and are capable of constraining DNA negative supercoils, protecting DNA from Dnase I digestion, and do not compact DNA obviously. However, a detailed understanding of the structural basis of the interaction of Sac10b family proteins with DNA is still lacking. Here, we determined the crystal structure of Mth10b, an atypical member of the Sac10b family from Methanobacterium thermoautotrophicum ΔH, at 2.2 Å. Unlike typical Sac10b family proteins, Mth10b is an acidic protein and binds to neither DNA nor RNA. The overall structure of Mth10b displays high similarity to its homologs, but three pairs of conserved positively charged residues located at the presumed DNA-binding surface are substituted by non-charged residues in Mth10b. Through amino acids interchanges, the DNA-binding ability of Mth10b was restored successfully, whereas the DNA-binding ability of Sso10b, a typical Sac10b family member, was weakened greatly. Based on these results, we propose a model describing the molecular mechanism underlying the interactions of typical Sac10b family proteins with DNA that explains all the characteristics of the interactions between typical Sac10b family members and DNA

    The Proteomic Code: a molecular recognition code for proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code.</p> <p>Review</p> <p>The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding.</p> <p>Methods and conclusions</p> <p>A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP) is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.</p
    corecore