14,114 research outputs found

    A Brief Interpretation of Summer Flounder, Paralichthys dentatus, Movements and Stock Structure with New Tagging Data on Juveniles

    Get PDF
    Summer flounder, Paralichthys dentatus, are managed as a single stock along the Atlantic coast from the U.S.– Canada border to the southern border of North Carolina. Justification of the single-stock approach is based on lack of genetic evidence for multiple stocks and the difficulty presented by managing the species from Cape Hatteras to the U.S.–Canada border. In this review, we present an interpretation of various morphometric, meristic, biochemical, and tagging studies, published and unpublished, that indicate the presence of two, or possibly three, distinct stocks in the management area. In addition, we have included new data from a tagging study that was conducted on juveniles from Virginia that aids in defining the stock(s) north of Cape Hatteras. Summer flounder, overfished for the past two decades, is recovering, and reconsideration of proposed stock structure could have direct implications for management policy decisions

    Numerical Analysis of the Capacities for Two-Qubit Unitary Operations

    Get PDF
    We present numerical results on the capacities of two-qubit unitary operations for creating entanglement and increasing the Holevo information of an ensemble. In all cases tested, the maximum values calculated for the capacities based on the Holevo information are close to the capacities based on the entanglement. This indicates that the capacities based on the Holevo information, which are very difficult to calculate, may be estimated from the capacities based upon the entanglement, which are relatively straightforward to calculate.Comment: 9 pages, 10 figure

    D7-Brane Chaotic Inflation

    Get PDF
    We analyze string-theoretic large-field inflation in the regime of spontaneously-broken supergravity with conventional moduli stabilization by fluxes and non-perturbative effects. The main ingredient is a shift-symmetric Kahler potential, supplemented by flux-induced shift symmetry breaking in the superpotential. The central technical observation is that all these features are present for D7-brane position moduli in Type IIB orientifolds, allowing for a realization of the axion monodromy proposal in a controlled string theory compactification. On the one hand, in the large complex structure regime the D7-brane position moduli inherit a shift symmetry from their mirror-dual Type IIA Wilson lines. On the other hand, the Type IIB flux superpotential generically breaks this shift symmetry and allows, by appealing to the large flux discretuum, to tune the relevant coefficients to be small. The shift-symmetric direction in D7-brane moduli space can then play the role of the inflaton: While the D7-brane circles a certain trajectory on the Calabi-Yau many times, the corresponding F-term energy density grows only very slowly, thanks to the above-mentioned tuning of the flux. Thus, the large-field inflationary trajectory can be realized in a regime where Kahler, complex structure and other brane moduli are stabilized in a conventional manner, as we demonstrate using the example of the Large Volume Scenario.Comment: 8 pages, 2 figures; v2: references adde

    Self-consistent stationary MHD shear flows in the solar atmosphere as electric field generators

    Full text link
    Magnetic fields and flows in coronal structures, for example, in gradual phases in flares, can be described by 2D and 3D magnetohydrostatic (MHS) and steady magnetohydrodynamic (MHD) equilibria. Within a physically simplified, but exact mathematical model, we study the electric currents and corresponding electric fields generated by shear flows. Starting from exact and analytically calculated magnetic potential fields, we solveid the nonlinear MHD equations self-consistently. By applying a magnetic shear flow and assuming a nonideal MHD environment, we calculated an electric field via Faraday's law. The formal solution for the electromagnetic field allowed us to compute an expression of an effective resistivity similar to the collisionless Speiser resistivity. We find that the electric field can be highly spatially structured, or in other words, filamented. The electric field component parallel to the magnetic field is the dominant component and is high where the resistivity has a maximum. The electric field is a potential field, therefore, the highest energy gain of the particles can be directly derived from the corresponding voltage. In our example of a coronal post-flare scenario we obtain electron energies of tens of keV, which are on the same order of magnitude as found observationally. This energy serves as a source for heating and acceleration of particles.Comment: 11 pages, 9 figures, accepted to Astronomy and Astrophysic

    Non-Bilocal Measurement via Entangled State

    Full text link
    Two observers, who share a pair of particles in an entangled mixed state, can use it to perform some non-bilocal measurement over another bipartite system. In particular, one can construct a specific game played by the observers against a coordinator, in which they can score better than a pair of observers who only share a classical communication channel.Comment: 6 pages. minor change
    • …
    corecore