320 research outputs found

    Microscopic features of moving traffic jams

    Full text link
    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with "moving blanks" within the jam. Empirical features of the moving blanks are found. Based on microscopic models in the context of three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Structure of moving jam fronts is studied based in microscopic traffic simulations. Non-linear effects associated with moving jam propagation are numerically investigated and compared with empirical results.Comment: 19 pages, 12 figure

    One-Center Charge Transfer Transitions in Manganites

    Full text link
    In frames of a rather conventional cluster approach, which combines the crystal field and the ligand field models we have considered different charge transfer (CT) states and O 2p-Mn 3d CT transitions in MnO69_{6}^{9-} octahedra. The many-electron dipole transition matrix elements were calculated using the Racah algebra for the cubic point group. Simple "local" approximation allowed to calculate the relative intensity for all dipole-allowed ππ\pi -\pi and σσ\sigma -\sigma CT transitions. We present a self-consistent description of the CT bands in insulating stoichiometric LaMn3+^{3+}O3_3 compound with the only Mn3+^{3+} valent state and idealized octahedral MnO69_{6}^{9-} centers which allows to substantially correct the current interpretation of the optical spectra. Our analysis shows the multi-band structure of the CT optical response with the weak low-energy edge at 1.7 eV, associated with forbidden t1g(π)egt_{1g}(\pi)-e_{g} transition and a series of the weak and strong dipole-allowed high-energy transitions starting from 2.5 and 4.5 eV, respectively, and extending up to nearly 11 eV. The most intensive features are associated with two strong composite bands near 4.6÷4.74.6\div 4.7 eV and 8÷98\div 9 eV, respectively, resulting from the superposition of the dipole-allowed σσ\sigma -\sigma and ππ\pi -\pi CT transitions. These predictions are in good agreement with experimental spectra. The experimental data point to a strong overscreening of the crystal field parameter DqDq in the CT states of MnO69_{6}^{9-} centers.Comment: 10 pages, 3 figure

    KIR3DL1 Allotype-Dependent Modulation of NK Cell Immunity against Chronic Myeloid Leukemia

    Get PDF
    Tyrosine kinase inhibitor (TKI)–treated chronic myeloid leukemia (CML) patients with increased NK cell number have a better prognosis, and thus, NK cells may suppress CML. However, the efficacy of TKIs varies for reasons yet to be fully elucidated. As NK cell activity is modulated by interactions between their killer cell Ig-like receptors (KIRs) and HLAs of target cells, the combination of their polymorphisms may have functional significance. We previously showed that allelic polymorphisms of KIR3DL1 and HLAs were associated with the prognosis of TKI-treated CML patients. In this study, we focus on differential NK cell activity modulation through KIR3DL1 allotypes. KIR3DL1 expression levels varied according to their alleles. The combination of KIR3DL1 expression level and HLA-Bw4 motifs defined NK cell activity in response to the CML-derived K562 cell line, and Ab-mediated KIR3DL1 blocking reversed this activity. The TKI dasatinib enhanced NK cell activation and cytotoxicity in a KIR3DL1 allotype-dependent manner but did not significantly decrease effector regulatory T cells, suggesting that it directly activated NK cells. Dasatinib also enhanced NK cell cytotoxicity against K562 bearing the BCR-ABL1 T315I TKI resistance–conferring mutation, depending on KIR3DL1/HLA-Bw4 allotypes. Transduction of KIR3DL1*01502 into the NK cell line NK-92 resulted in KIR3DL1 expression and suppression of NK-92 activity by HLA-B ligation, which was reversed by anti-KIR3DL1 Ab. Finally, KIR3DL1 expression levels also defined activation patterns in CML patient–derived NK cells. Our findings raise the possibility of a novel strategy to enhance antitumor NK cell immunity against CML in a KIR3DL1 allotype-dependent manner

    Changing Selective Pressure during Antigenic Changes in Human Influenza H3

    Get PDF
    The rapid evolution of influenza viruses presents difficulties in maintaining the optimal efficiency of vaccines. Amino acid substitutions result in antigenic drift, a process whereby antisera raised in response to one virus have reduced effectiveness against future viruses. Interestingly, while amino acid substitutions occur at a relatively constant rate, the antigenic properties of H3 move in a discontinuous, step-wise manner. It is not clear why this punctuated evolution occurs, whether this represents simply the fact that some substitutions affect these properties more than others, or if this is indicative of a changing relationship between the virus and the host. In addition, the role of changing glycosylation of the haemagglutinin in these shifts in antigenic properties is unknown. We analysed the antigenic drift of HA1 from human influenza H3 using a model of sequence change that allows for variation in selective pressure at different locations in the sequence, as well as at different parts of the phylogenetic tree. We detect significant changes in selective pressure that occur preferentially during major changes in antigenic properties. Despite the large increase in glycosylation during the past 40 years, changes in glycosylation did not correlate either with changes in antigenic properties or with significantly more rapid changes in selective pressure. The locations that undergo changes in selective pressure are largely in places undergoing adaptive evolution, in antigenic locations, and in locations or near locations undergoing substitutions that characterise the change in antigenicity of the virus. Our results suggest that the relationship of the virus to the host changes with time, with the shifts in antigenic properties representing changes in this relationship. This suggests that the virus and host immune system are evolving different methods to counter each other. While we are able to characterise the rapid increase in glycosylation of the haemagglutinin during time in human influenza H3, an increase not present in influenza in birds, this increase seems unrelated to the observed changes in antigenic properties

    The Fundamental Diagram of Pedestrian Movement Revisited

    Full text link
    The empirical relation between density and velocity of pedestrian movement is not completely analyzed, particularly with regard to the `microscopic' causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the normal movement of pedestrians along a line (single-file movement). This article presents experimental results for this system under laboratory conditions and discusses the following observations: The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-file movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation at the density domain 1m2<ρ<5m21 m^{-2}<\rho<5 m^{-2}. In addition we test a procedure for automatic recording of pedestrian flow characteristics. We present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure

    Macroscopic traffic models from microscopic car-following models

    Full text link
    We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are compared with those of the optimal velocity model through numerical simulations, and reasonable agreement is found although there are deviations in the quantitative level. The derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.

    Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    Full text link
    A microscopic criterion for distinguishing synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Empirical local congested traffic states in single vehicle data measured on different days are classified into synchronized flow states and states consisting of synchronized flow and wide moving jam(s). Then empirical microscopic characteristics for these different local congested traffic states are studied. Using these characteristics and empirical spatiotemporal macroscopic traffic phenomena, an empirical test of a microscopic three-phase traffic flow theory is performed. Simulations show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are it lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models.Comment: 27 pages, 16 figure

    Impact of cigarette smoking on the relationship between body mass index and coronary heart disease: a pooled analysis of 3264 stroke and 2706 CHD events in 378579 individuals in the Asia Pacific region

    Get PDF
    BACKGROUND: Elevated levels of body mass index (BMI) and smoking are well established lifestyle risk factors for coronary heart disease (CHD) and stroke. If these two risk factors have a synergistic relationship, rigorous lifestyle modification may contribute to greater reduction in cardiovascular burden than previously expected. METHODS: A pooled analysis of individual participant data from 38 cohorts, involving 378,579 participants. Hazards ratios (HRs) and 95% confidence intervals (CIs) for BMI by cigarette smoking status were estimated using Cox proportional hazard models. RESULTS: During a mean follow-up of 3.8 years, 2706 CHD and 3264 strokes were recorded. There was a log-linear, positive relationship of BMI with CHD and stroke in both smokers and non-smokers with evidence of a synergistic effect of smoking on the association between BMI and CHD only: HRs (95% CIs) associated with a 2 kg/m2 higher BMI were 1.13 (1.10-1.17) in current smokers and 1.09 (1.06-1.11) in non-smokers (p-value for interaction=0.04). CONCLUSION: Smoking amplifies the positive association between BMI and CHD but not stroke. If confirmed, these results suggest that effective strategies that target smoking cessation and weight loss are likely to have a greater impact than anticipated on reducing the burden of CHD.published_or_final_versio

    Open Government Data: A Focus on Key Economic and Organizational Drivers

    Get PDF
    Grounding the analysis on multidisciplinary literature on the topic, the existing EU legislation and relevant examples, this working paper aims at highlighting some key economic and organizational aspects of the "Open Government Data" paradigm and its drivers and implications within and outside Public Administrations. The discussion intends to adopt an "Internet Science" perspective, taking into account as enabling factors the digital environment itself, as well as specific models and tools. More "traditional" and mature markets grounded on Public Sector Information are also considered, in order to indirectly detect the main differences with respect to the aforementioned paradig
    corecore