1,420 research outputs found

    Concepts for design of an energy management system incorporating dispersed storage and generation

    Get PDF
    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed

    Requirements for a transformerless power conditioning system

    Get PDF
    Requirements for development of a Transformerless Power Conditioning Subsystem (TPCS) that will meet utility, manufacturer, and customer needs are detailed. Issues analyzed include current utility guidelines, safety and grounding issues that appear as local codes, various kinds of TPCS connections that can be developed, dc injection, and a brief survey of TPCS circuit topologies that will meet requirements. The major result is that a finite time exists for control operation before dc injection into the distribution transformer causes customer outage (on the order of seconds). This time permits the control system to sense a dc injection condition and remove the TPCS from the utility system. Requirements for such a control system are specified. A three wire connection will ensure balanced operation for customer loads and two wire connections caused average value dc to be injected into single phase loads. This type of connection also allows for the lowest array voltage. The conclusion is that requirements for a TPCS can be determined and that there are not showstopping issues preventing implementation. The actual design and topology of the TPCS was left for further study

    Thermoluminescence fading studies: Implications for long-duration space measurements in Low Earth Orbit

    Full text link
    Within a 1.5 year comprehensive fading experiment several batches of LiF:Mg,Ti and LiF:Mg,Cu,P thermoluminescence detectors (TLDs) were studied. The TLDs originated from two manufacturers and were processed by three laboratories using different annealing and readout conditions. The TLDs were irradiated with two radiation modalities (gamma-rays and thermal neutrons) and were stored at two temperatures (-17.4C and +18.5C). The goal of the experiment was to verify the stability of TLDs in the context of their application in long-term measurements in space. The results revealed that the response of all TLDs is stable within 10% for the studied temperature range. No influence of the radiation type was found. These results indicate that for the properly oven-annealed LiF TLDs, fading is not a significant problem, even for measuring periods longer than a year

    A Single Circumbinary Disk in the HD 98800 Quadruple System

    Get PDF
    We present sub-arcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0.8'' (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 microns show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess upon which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 microns and longer, peaks at 25 microns, and has a best-fit black-body temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most-likely values of disk properties in the ranges considered are R_in = 5.0 +/- 2.5 AU, DeltaR = 13+/-8 AU, lambda_0 = 2(+4/-1.5) microns, gamma = 0+/-2.5, and sigma_total = 16+/-3 AU^2, where R_in is the inner radius, DeltaR is the radial extent of the disk, lambda_0 is the effective grain size, gamma is the radial power-law exponent of the optical depth, tau, and sigma_total is the total cross-section of the grains. The range of implied disk masses is 0.001--0.1 times that of the moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.Comment: 11 page Latex manuscript with 3 postscript figures. Accepted for publication in Astrophysical Journal Letters. Postscript version of complete paper also available at http://www.hep.upenn.edu/PORG/web/papers/koerner00a.p

    A search for L dwarf binary systems

    Get PDF
    We present analysis of HST Planetary Camera images of twenty L dwarfs identified in the course of the Two Micron All-Sky Survey. Four of the targets have faint, red companions at separations between 0.07 and 0.29 arcseconds (1.6 to 7.6 AU). In three cases, the bolometric magnitudes of the components differ by less than 0.3 magnitudes. Since the cooling rate for brown dwarfs is a strong function of mass, similarity in luminosities implies comparable masses. The faint component in the 2M0850 system, however, is over 1.3 magnitudes fainter than the primary in the I-band, and ~0.8 magnitudes fainter in M(bol). Indeed, 2M0850B is ~0.8 magnitudes fainter in I than the lowest luminosity L dwarf currently known, while the absolute magnitude we deduce at J is almost identical with M_J for Gl 229B. Theoretical models indicate a mass ratio of \~0.75. The mean separation of the L dwarf binaries in the current sample is smaller by a factor of two than amongst M dwarfs. We discuss the implications of these results for the temperature scale in the L/T transition region and for the binary frequency amongst L dwarfs.Comment: 38 pages, 11 figures; accepted for A

    Exciton diffusion length and charge extraction yield in organic bilayer solar cells

    Get PDF
    A method for resolving the diffusion length of excitons and the extraction yield of charge carriers is presented based on the performance of organic bilayer solar cells and careful modeling. The technique uses a simultaneous variation of the absorber thickness and the excitation wavelength. Rigorously differing solar cell structures as well as independent photoluminescence quenching measurements give consistent results

    Radial Distribution of Dust Grains Around HR 4796A

    Get PDF
    We present high-dynamic-range images of circumstellar dust around HR 4796A that were obtained with MIRLIN at the Keck II telescope at lambda = 7.9, 10.3, 12.5 and 24.5 um. We also present a new continuum measurement at 350 um obtained at the Caltech Submillimeter Observatory. Emission is resolved in Keck images at 12.5 and 24.5 um with PSF FWHM's of 0.37" and 0.55", respectively, and confirms the presence of an outer ring centered at 70 AU. Unresolved excess infrared emission is also detected at the stellar position and must originate well within 13 AU of the star. A model of dust emission fit to flux densities at 12.5, 20.8, and 24.5 um indicates dust grains are located 4(+3/-2) AU from the star with effective size, 28+/-6 um, and an associated temperature of 260+/-40 K. We simulate all extant data with a simple model of exozodiacal dust and an outer exo-Kuiper ring. A two-component outer ring is necessary to fit both Keck thermal infrared and HST scattered-light images. Bayesian parameter estimates yield a total cross-sectional area of 0.055 AU^2 for grains roughly 4 AU from the star and an outer-dust disk composed of a narrow large-grain ring embedded within a wider ring of smaller grains. The narrow ring is 14+/-1 AU wide with inner radius 66+/-1 AU and total cross-sectional area 245 AU^2. The outer ring is 80+/-15 AU wide with inner radius 45+/-5 AU and total cross-sectional area 90 AU^2. Dust grains in the narrow ring are about 10 times larger and have lower albedos than those in the wider ring. These properties are consistent with a picture in which radiation pressure dominates the dispersal of an exo-Kuiper belt.Comment: Accepted by Astrophysical Journal (Part1) on September 9, 2004. 13 pages, 10 figures, 2 table

    Divergence of the Grueneisen Ratio at Quantum Critical Points in Heavy Fermion Metals

    Get PDF
    We present low-temperature volume thermal expansion, β\beta, and specific heat, CC, measurements on high-quality single crystals of CeNi2Ge2 and YbRh2(Si0.95_{0.95}Ge0.05_{0.05})2_2 which are located very near to quantum critical points. For both systems, β\beta shows a more singular temperature dependence than CC, and thus the Grueneisen ratio Γβ/C{\Gamma \propto \beta/C} diverges as T --> 0. For CeNi2Ge2, our results are in accordance with the spin-density wave (SDW) scenario for three-dimensional critical spin-fluctuations. By contrast, the observed singularity in YbRh2(Si(Si_{0.95}GeGe_{0.05}))_2$ cannot be explained by the itinerant SDW theory but is qualitatively consistent with a locally quantum critical picture.Comment: 11 pages, 4 figure
    corecore