74 research outputs found

    A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

    No full text
    Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzymatic reaction and the quenching effect of H2O2 on the CdTe/TGA quantum dots photoluminescence. This QDs-based assay exhibits several advantages. Enzyme immobilization and QDs modification process are not required and the high stability of the QDs towards photobleaching is beneficial to this sensing system. The proposed method is linear in concentration range of 1.00 × 10-1-3.00 × 10-5 M of glucose and has a detection limit of 1.25 × 10-8 M. The results of real sample analysis show that the glucose oxidase CdTe/TGA QDs system would be a promising glucose-biosensing system

    A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

    No full text
    Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzymatic reaction and the quenching effect of H 2 O 2 on the CdTe/TGA quantum dots photoluminescence. This QDs-based assay exhibits several advantages. Enzyme immobilization and QDs modification process are not required and the high stability of the QDs towards photobleaching is beneficial to this sensing system. The proposed method is linear in concentration range of 1.00 × 10 -1 -3.00 × 10 -5 M of glucose and has a detection limit of 1.25 × 10 -8 M. The results of real sample analysis show that the glucose oxidase CdTe/TGA QDs system would be a promising glucose-biosensing system

    Dynamic internal gradients control and direct electric currents within nanostructured materials

    No full text
    Switchable nanomaterials-materials that can change their properties and/or function in response to external stimuli-have potential applications in electronics, sensing and catalysis. Previous efforts to develop such materials have predominately used molecular switches that can modulate their properties by means of conformational changes. Here, we show that electrical conductance through films of gold nanoparticles coated with a monolayer of charged ligands can be controlled by dynamic, long-range gradients of both mobile counterions surrounding the nanoparticles and conduction electrons on the nanoparticle cores. The internal gradients and the electric fields they create are easily reconfigurable, and can be set up in such a way that electric currents through the nanoparticles can be modulated, blocked or even deflected so that they only pass through select regions of the material. The nanoion/counterion hybrids combine the properties of electronic conductors with those of ionic gels/polymers, are easy to process by solution-casting and, by controlling the internal gradients, can be reconfigured into different electronic elements (current rectifiers, switches and diodes)
    corecore