4,265 research outputs found

    Various Approaches to Cosmological Gravitational Lensing in Inhomogeneous Models

    Get PDF
    Gravitational lensing of distant objects caused by gravitational tidal forces from inhomogeneities in the universe is weak in most cases, but it is noticed that it gives a great deal of information about the universe, especially regarding the distribution of dark matter. The statistical values of optical quantities such as convergence, amplification and shear have been derived by many people using various approaches, which include the linear perturbational treatment in the weak limit and the nonlinear treatment considering small-scale matter distribution. In this review paper we compare the following three main approaches: (a) the approach in the multi-lens-plane theory; (b) the approach due to the direct integration method; and (c) the perturbational approach. In the former two approaches inhomogeneous matter distributions are produced in the CDM model using NN-body simulations (the P3^3M code and the tree-code, respectively). In (c) the power spectrum corresponding to the CDM model is used for the large-scale matter distribution.Comment: 30 pages, 13 figure

    Sterile neutrino dark matter in warped extra dimensions

    Full text link
    We consider a (long-lived) sterile neutrino dark matter scenario in a five dimensional (5D) warped extra dimension model where the fields can live in the bulk, which is partly motivated from the absence of the absolutely stable particles in a simple Randall-Sundrum model. The dominant production of the sterile neutrino can come from the decay of the radion (the scalar field representing the brane separation) around the electroweak scale. The suppressions of the 4D parameters due to the warp factor and the small wave function overlaps in the extra dimension help alleviate the exceeding fine-tunings typical for a sterile neutrino dark matter scenario in a 4D setup.Comment: Typos corrected and references adde

    Charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4: Cooperative effects of electron correlations and lattice distortions

    Full text link
    Combined effects of electron correlations and lattice distortions are investigated on the charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4 theoretically in a two-dimensional 3/4-filled extended Hubbard model with electron-lattice couplings. It is known that this material undergoes a phase transition from a high-symmetry metallic state to a low-symmetry insulating state with a horizontal-stripe charge order (CO) by lowering temperature. By means of the exact-diagonalization method, we show that electron-phonon interactions are crucial to stabilize the horizontal-stripe CO and to realize the low-symmetry crystal structure.Comment: 7 peges, 7 figures, accepted for publication in Phys. Rev.

    Log-aesthetic Curves as Similarity Geometric Analogue of Euler's Elasticae

    Full text link
    In this paper we consider the log-aesthetic curves and their generalization which are used in CAGD. We consider those curves under similarity geometry and characterize them as stationary integrable flow on plane curves which is governed by the Burgers equation. We propose a variational formulation of those curves whose Euler-Lagrange equation yields the stationary Burgers equation. Our result suggests that the log-aesthetic curves and their generalization can be regarded as the similarity geometric analogue of Euler's elasticae

    Shape of Deconstruction

    Full text link
    We construct a six-dimensional Maxwell theory using a latticized extra space, the continuum limit of which is a shifted torus recently discussed by Dienes. This toy model exhibits the correspondence between continuum theory and discrete theory, and give a geometrical insight to theory-space model building.Comment: 10 pages, 2 figures, RevTeX4. a citation adde

    Analysis of one- and two-particle spectra at RHIC based on a hydrodynamical model

    Get PDF
    We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of s=130A\sqrt{s}=130AGeV Au+Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark-gluon plasma with large volume and low net baryon density.Comment: LaTeX, 4pages, 4 figures. To appear in the proceedings of Fourth International Conference on Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP-2001), Nov 26-30, 2001, Jaipur, Indi

    On the Backbending Mechanism of 48^{48}Cr

    Full text link
    The mechanism of backbending in 48^{48}Cr is investigated in terms of the Projected Shell Model and the Generator Coordinate Method. It is shown that both methods are reasonable shell model truncation schemes. These two quite different quantum mechanical approaches lead to a similar conclusion that the backbending is due to a band crossing involving an excited band which is built on simultaneously broken neutron and proton pairs in the ``intruder'' subshell f7/2f_{7/2}. It is pointed out that this type of band crossing is usually known to cause the second backbending in rare-earth nuclei.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
    corecore