59 research outputs found

    Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: the DIANA study

    Get PDF
    Purpose: The DIANA study aimed to evaluate how often antimicrobial de-escalation (ADE) of empirical treatment is performed in the intensive care unit (ICU) and to estimate the effect of ADE on clinical cure on day 7 following treatment initiation. Methods: Adult ICU patients receiving empirical antimicrobial therapy for bacterial infection were studied in a prospective observational study from October 2016 until May 2018. ADE was defined as (1) discontinuation of an antimicrobial in case of empirical combination therapy or (2) replacement of an antimicrobial with the intention to narrow the antimicrobial spectrum, within the first 3 days of therapy. Inverse probability (IP) weighting was used to account for time-varying confounding when estimating the effect of ADE on clinical cure. Results: Overall, 1495 patients from 152 ICUs in 28 countries were studied. Combination therapy was prescribed in 50%, and carbapenems were prescribed in 26% of patients. Empirical therapy underwent ADE, no change and change other than ADE within the first 3 days in 16%, 63% and 22%, respectively. Unadjusted mortality at day 28 was 15.8% in the ADE cohort and 19.4% in patients with no change [p = 0.27; RR 0.83 (95% CI 0.60\u20131.14)]. The IP-weighted relative risk estimate for clinical cure comparing ADE with no-ADE patients (no change or change other than ADE) was 1.37 (95% CI 1.14\u20131.64). Conclusion: ADE was infrequently applied in critically ill-infected patients. The observational effect estimate on clinical cure suggested no deleterious impact of ADE compared to no-ADE. However, residual confounding is likely

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Distribution of phosphorus in the Middle and Upper Ordovician Baltoscandian carbonate palaeobasin

    No full text
    Baltoscandian Middle and Upper Ordovician carbonate rocks are relatively poor in phosphorus, with the P2O5 content of 0.05–0.5%, rarely exceeding 1%. Phosphorus distribution in the Ordovician carbonate succession shows spatial and temporal variations. In the Estonian Shelf P content is the highest in the Middle Ordovician, close to the Tremadocian P-rich siliciclastic sediments, decreasing towards younger carbonate rocks. In the basinal, i.e. deep shelf, sections two intervals of elevated P contents occur: the first is similar to the shallow shelf in the lowermost Darriwilian, the second is a moderate P increase in the upper Darriwilian–Sandbian interval. The Darriwilian–Sandbian interval of elevated P content in the deep shelf sections roughly corresponds to algal kukersite accumulations in the shallow shelf. Multiple processes determined phosphorus distribution in the studied sediments. Regional processes influencing P distribution include seawater circulation, e.g. P influx by coastal upwellings, and sedimentation rate. Global oceanic variation in bioproduction (δ13C trends) had no positive effect on P accumulation in the Baltoscandian epeiric sea
    corecore