3 research outputs found

    A Szemeredi-Trotter type theorem in R4\mathbb{R}^4

    Full text link
    We show that mm points and nn two-dimensional algebraic surfaces in R4\mathbb{R}^4 can have at most O(mk2k1n2k22k1+m+n)O(m^{\frac{k}{2k-1}}n^{\frac{2k-2}{2k-1}}+m+n) incidences, provided that the algebraic surfaces behave like pseudoflats with kk degrees of freedom, and that mn2k+23km\leq n^{\frac{2k+2}{3k}}. As a special case, we obtain a Szemer\'edi-Trotter type theorem for 2--planes in R4\mathbb{R}^4, provided mnm\leq n and the planes intersect transversely. As a further special case, we obtain a Szemer\'edi-Trotter type theorem for complex lines in C2\mathbb{C}^2 with no restrictions on mm and nn (this theorem was originally proved by T\'oth using a different method). As a third special case, we obtain a Szemer\'edi-Trotter type theorem for complex unit circles in C2\mathbb{C}^2. We obtain our results by combining several tools, including a two-level analogue of the discrete polynomial partitioning theorem and the crossing lemma.Comment: 50 pages. V3: final version. To appear in Discrete and Computational Geometr

    A survey on additive and multiplicative decompositions of sumsets and of shifted sets

    No full text
    In this paper we survey results on sumsets with multiplicative prop-erties and the question if a shifted copy of a multiplicatively defined set can again be multiplicatively defined. The methods involved are of analytic nature such as the large sieve, and of combinatorial nature such as extremal graph theory.
    corecore