34,780 research outputs found
Efficient Embedded Speech Recognition for Very Large Vocabulary Mandarin Car-Navigation Systems
Automatic speech recognition (ASR) for a very large vocabulary of isolated words is a difficult task on a resource-limited embedded device. This paper presents a novel fast decoding algorithm for a Mandarin speech recognition system which can simultaneously process hundreds of thousands of items and maintain high recognition accuracy. The proposed algorithm constructs a semi-tree search network based on Mandarin pronunciation rules, to avoid duplicate syllable matching and save redundant memory. Based on a two-stage fixed-width beam-search baseline system, the algorithm employs a variable beam-width pruning strategy and a frame-synchronous word-level pruning strategy to significantly reduce recognition time. This algorithm is aimed at an in-car navigation system in China and simulated on a standard PC workstation. The experimental results show that the proposed method reduces recognition time by nearly 6-fold and memory size nearly 2- fold compared to the baseline system, and causes less than 1% accuracy degradation for a 200,000 word recognition task
RNA Unwinding by the Trf4/Air2/Mtr4 Polyadenylation (TRAMP) Complex
Many RNA-processing events in the cell nucleus involve the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for processing by the nuclear exosome. In addition, TRAMP functions as an exosome cofactor during RNA degradation, and it has been speculated that this role involves disruption of RNA secondary structure. However, it is unknown whether TRAMP displays RNA unwinding activity. It is also not clear how unwinding would be coordinated with polyadenylation and the function of the RNA helicase Mtr4p in modulating poly(A) addition. Here, we show that TRAMP robustly unwinds RNA duplexes. The unwinding activity of Mtr4p is significantly stimulated by Trf4p/Air2p, but the stimulation of Mtr4p does not depend on ongoing polyadenylation. Nonetheless, polyadenylation enables TRAMP to unwind RNA substrates that it otherwise cannot separate. Moreover, TRAMP displays optimal unwinding activity on substrates with a minimal Mtr4p binding site comprised of adenylates. Our results suggest a model for coordination between unwinding and polyadenylation activities by TRAMP that reveals remarkable synergy between helicase and poly(A) polymerase
Degradation of Hypomodified tRNA\u3csub\u3ei\u3c/sub\u3e\u3csup\u3eMet\u3c/sup\u3e in vivo Involves RNA-dependent ATPase Activity of the DExH Helicase Mtr4p
Effective turnover of many incorrectly processed RNAs in yeast, including hypomodified tRNAi Met, requires the TRAMP complex, which appends a short poly(A) tail to RNA designated for decay. The poly(A) tail stimulates degradation by the exosome. The TRAMP complex contains the poly(A) polymerase Trf4p, the RNA-binding protein Air2p, and the DExH RNA helicase Mtr4p. The role of Mtr4p in RNA degradation processes involving the TRAMP complex has been unclear. Here we show through a genetic analysis that MTR4 is required for degradation but not for polyadenylation of hypomodified tRNAi Met. A suppressor of the trm6-504 mutation in the tRNA m1A58 methyltransferase (Trm6p/Trm61p), which causes a reduced level of tRNAi Met, was mapped to MTR4. This mtr4-20 mutation changed a single amino acid in the conserved helicase motif VI of Mtr4p. The mutation stabilizes hypomodified tRNAi Met in vivo but has no effect on TRAMP complex stability or polyadenylation activity in vivo or in vitro. We further show that purified recombinant Mtr4p displays RNA-dependent ATPase activity and unwinds RNA duplexes with a 3′-to-5′ polarity in an ATP-dependent fashion. Unwinding and RNA-stimulated ATPase activities are strongly reduced in the recombinant mutant Mtr4-20p, suggesting that these activities of Mtr4p are critical for degradation of polyadenylated hypomodified tRNAi Met
- …