247 research outputs found
Phase resolution limit in macroscopic interference between Bose-Einstein condensates
We study the competition between phase definition and quantum phase
fluctuations in interference experiments between independently formed Bose
condensates. While phase-sensitive detection of atoms makes the phase
progressively better defined, interactions tend to randomize it faster as the
uncertainty in the relative particle number grows. A steady state is reached
when the two effects cancel each other. Then the phase resolution saturates to
a value that grows with the ratio between the interaction strength and the atom
detection rate, and the average phase and number begin to fluctuate
classically. We discuss how our study applies to both recently performed and
possible future experiments.Comment: 4 pages, 5 figure
Non-destructive optical measurement of relative phase between two Bose condensates
We study the interaction of light with two Bose condensates as an open
quantum system. The two overlapping condensates occupy two different Zeeman
sublevels and two driving light beams induce a coherent quantum tunneling
between the condensates. We derive the master equation for the system. It is
shown that stochastic simulations of the measurements of spontaneously
scattered photons establish the relative phase between two Bose condensates,
even though the condensates are initially in pure number states. These
measurements are non-destructive for the condensates, because only light is
scattered, but no atoms are removed from the system. Due to the macroscopic
quantum interference the detection rate of photons depends substantially on the
relative phase between the condensates. This may provide a way to distinguish,
whether the condensates are initially in number states or in coherent states.Comment: 26 pages, RevTex, 8 postscript figures, 1 MacBinary eps-figur
Optical linewidth of a low density Fermi-Dirac gas
We study propagation of light in a Fermi-Dirac gas at zero temperature. We
analytically obtain the leading density correction to the optical linewidth.
This correction is a direct consequence of the quantum statistical correlations
of atomic positions that modify the optical interactions between the atoms at
small interatomic separations. The gas exhibits a dramatic line narrowing
already at very low densities.Comment: 4 pages, 2 figure
Testing Broken U(1) Symmetry in a Two-Component Atomic Bose-Einstein Condensate
We present a scheme for determining if the quantum state of a small trapped
Bose-Einstein condensate is a state with well defined number of atoms, a Fock
state, or a state with a broken U(1) gauge symmetry, a coherent state. The
proposal is based on the observation of Ramsey fringes. The population
difference observed in a Ramsey fringe experiment will exhibit collapse and
revivals due to the mean-field interactions. The collapse and revival times
depend on the relative strength of the mean-field interactions for the two
components and the initial quantum state of the condensate.Comment: 20 Pages RevTex, 3 Figure
Absorption imaging of a quasi 2D gas: a multiple scattering analysis
Absorption imaging with quasi-resonant laser light is a commonly used
technique to probe ultra-cold atomic gases in various geometries. Here we
investigate some non-trivial aspects of this method when it is applied to in
situ diagnosis of a quasi two-dimensional gas. Using Monte Carlo simulations we
study the modification of the absorption cross-section of a photon when it
undergoes multiple scattering in the gas. We determine the variations of the
optical density with various parameters, such as the detuning of the light from
the atomic resonance and the thickness of the gas. We compare our results to
the known three-dimensional result (Beer-Lambert law) and outline the specific
features of the two-dimensional case.Comment: 22 pages, 5 figure
Talbot Oscillations and Periodic Focusing in a One-Dimensional Condensate
An exact theory for the density of a one-dimensional Bose-Einstein condensate
with hard core particle interactions is developed in second quantization and
applied to the scattering of the condensate by a spatially periodic impulse
potential. The boson problem is mapped onto a system of free fermions obeying
the Pauli exclusion principle to facilitate the calculation. The density
exhibits a spatial focusing of the probability density as well as a periodic
self-imaging in time, or Talbot effect. Furthermore, the transition from single
particle to many body effects can be measured by observing the decay of the
modulated condensate density pattern in time. The connection of these results
to classical and atom optical phase gratings is made explicit
Macroscopic dynamics of a trapped Bose-Einstein condensate in the presence of 1D and 2D optical lattices
The hydrodynamic equations of superfluids for a weakly interacting Bose gas
are generalized to include the effects of periodic optical potentials produced
by stationary laser beams. The new equations are characterized by a
renormalized interaction coupling constant and by an effective mass accounting
for the inertia of the system along the laser direction. For large laser
intensities the effective mass is directly related to the tunneling rate
between two consecutive wells. The predictions for the frequencies of the
collective modes of a condensate confined by a magnetic harmonic trap are
discussed for both 1D and 2D optical lattices and compared with recent
experimental data.Comment: 4 pages, 2 postscript figure
Phase preparation by atom counting of Bose-Einstein condensates in mixed states
We study the build up of quantum coherence between two Bose-Einstein
condensates which are initially in mixed states. We consider in detail the two
cases where each condensate is initially in a thermal or a Poisson distribution
of atom number. Although initially there is no relative phase between the
condensates, a sequence of spatial atom detections produces an interference
pattern with arbitrary but fixed relative phase. The visibility of this
interference pattern is close to one for the Poisson distribution of two
condensates with equal counting rates but it becomes a stochastic variable in
the thermal case, where the visibility will vary from run to run around an
average visibility of In both cases, the variance of the phase
distribution is inversely proportional to the number of atom detections in the
regime where this number is large compared to one but small compared with the
total number of atoms in the condensates.Comment: 9 pages, 6 PostScript figure, submitted to PR
- …
