39 research outputs found

    Productive disciplinary engagement in high- and low-outcome student groups: Observations from three collaborative science learning contexts

    Get PDF
    This study explored how productive disciplinary engagement (PDE) is associated with the level of cognitive activity and collective group outcome in collaborative learning across multiple contexts. Traditionally, PDE has been studied in a single collaborative learning environment, without analysis of how these environments fulfill the supporting conditions for PDE. In addition, research on the quality of a collective learning outcome and product in relation to the extent of the group’s PDE during actual collaborative learning processes is scarce. In this study, the learning processes of low- and high-outcome small groups were compared within three collaborative learning contexts: high school general science, second year university veterinary science, and fourth year university engineering. Two meaningful and self-contained phases from each context were selected for analysis. The same theory-based analytical methods were used across contexts. The findings revealed similar patterns in the high school science and second year university veterinary science data sets, where high-outcome groups displayed a greater proportion of high-level cognitive activity while working on the task. Thus, they could be distinctively perceived as high- and low-performing groups. These high-performing groups’ interactions also reflected more of the supporting conditions associated with PDE than the low-performing groups. An opposite pattern was found in the fourth year university engineering data set, calling for interpretation grounded in the literature on the nature and development of expertise. This study reveals the criticality of using comparable analytical methods across different contexts to enable discrepancies to emerge, thus refining our contextualized understanding of PDE in collaborative science learnin

    Significance of forms and foci of metacognitive regulation in collaborative science learning of less and more successful outcome groups in diverse contexts

    Get PDF
    This study investigated how metacognitive regulation (MR), especially its forms and foci, was manifested in less and more successful outcome groups’ collaborative science learning in diverse learning contexts. Whilst previous research has shown that different forms and foci of MR exist in collaborative learning, their role in groups’ learning outcomes remains unexplored. Drawing conclusions from different studies has been difficult because these have used different conceptualisations and analytic methods. In the present study, the learning processes of less and more successful outcome groups from three diverse collaborative science learning contexts were scrutinised. The contexts differed in academic level, disciplinary subject, and national culture. The same theory-based conceptualisations, coding systems, coders, and analyses were used across contexts. In addition, the tasks studied were designed using the same guiding principles. Transcribed video and audio recordings of the groups’ verbal interactions for two distinct interaction segments from these tasks formed the basis of the analyses. Manifestation of forms and foci of MR were quantitatively and qualitatively illustrated in each context. The main findings show that the manifestation of MR of less and more successful outcome groups demonstrated similarities and differences in the three different learning contexts. This study contributes to a contextualised understanding of MR in collaborative science learning, and highlights the importance of using similar, rigorous analytical tools across diverse contexts

    Manifestations of metacognitive activity during the collaborative planning of chemistry practical investigations

    No full text
    This paper elaborates a process followed to characterise manifestations of cognitive regulation during the collaborative planning of chemistry practical investigations. Metacognitive activity was defined as the demonstration of planning, monitoring, control and evaluation of cognitive activities by students while carrying out the chemistry task. Inherent in collaborative learning is the social aspect of metacognition, which in this study was evidenced in social cognitive regulation (notably of intra- and interpersonal metacognitive regulations) as groups of students went about planning their practical investigations. Discussions of two of the learning groups (n =4; n = 3) as they planned the extended practical investigation were recorded, transcribed and analysed for indicators of any inherent metacognitive activity. The process of characterising the manifestations of metacognition resulted in the development of a coding system which specifies not only the regulatory strategies at play but the type of regulation (self or other), the area of regulation (cognition, task performance or behaviour) as well as the depth of regulatory contributions (high or low). The fine-grained coding system allowed for a finer theoretical elucidation of the social nature of metacognition. The implications of this study for metacognition and chemistry education research are highlighted.The National Research Foundation (South Africa), Canon Collins Trust and Legal administered Ros Moger Terry Furlong Scholarship, Association for Commonwealth Universities and University of Pretoria postgraduate research support.http://www.tandfonline.com/loi/tsed202018-12-21hj2017ChemistryScience, Mathematics and Technology Educatio
    corecore