126 research outputs found
Laboratory study on heterogeneous decomposition of methyl chloroform on various standard aluminosilica clay minerals as a potential tropospheric sink
International audienceMethyl chloroform (1,1,1-trichloroethane, CH3CCl3) was found to decompose heterogeneously on seven types of standard clay minerals (23 materials) in dry air at 313 K in the laboratory. All reactions proceeded through the elimination of HCl; CH3CCl3 was converted quantitatively to CH2=CCl2. The activities of the clay minerals were compared via their pseudo-first-order reaction rate constants (k1). A positive correlation was observed between the k1 value and the specific surface area (S) of clay minerals, where the S value was determined by means of the general Brunauer-Emmett-Teller (BET) equation. The k1 value was anti-correlated with the value of n, which was a parameter of the general BET equation and related to the average pore size of the clay minerals, and correlated with the water content that can be removed easily from the clay minerals. The reaction required no special pretreatment of clay minerals, such as heating at high temperatures; hence, the reaction can be expected to occur in the environment. Photoillumination by wavelengths present in the troposphere did not accelerate the decomposition of CH3CCl3, but it induced heterogeneous photodecomposition of CH2=CCl2. The temperature dependence of k1, the adsorption equilibrium coefficient of CH3CCl3 and CH2=CCl2, and the surface reaction rate constant of CH3CCl3 were determined for an illite sample. The k1 value increased with increasing temperature. The amount of CH3CCl3 adsorbed on the illite during the reaction was proportional to the partial pressure of CH3CCl3. The reaction was sensitive to relative humidity and the k1 value decreased with increasing relative humidity. However, the reaction was found to proceed at a relative humidity of 22% at 313 K, although the k1 value was about one-twentieth of the value in non-humidified air. The conditions required for the reaction may be present in major desert regions of the world. A simple estimation indicates that the possible heterogeneous decomposition of CH3CCl3 on the ground surface in arid regions is worth taking into consideration when inferring the tropospheric lifetime of CH3CCl3 and global OH concentration from the global budget concentration of CH3CCl3
Anisotropic Superparamagnetism of Monodispersive Cobalt-Platinum Nanocrystals
Based on the high-temperature organometallic route (Sun et al. Science 287,
1989 (2000)), we have synthesized powders containing CoPt_3 single crystals
with mean diameters of 3.3(2) nm and 6.0(2) nm and small log-normal widths
sigma=0.15(1). In the entire temperature range from 5 K to 400 K, the
zero-field cooled susceptibility chi(T) displays significant deviations from
ideal superparamagnetism. Approaching the Curie temperature of 450(10) K, the
deviations arise from the (mean-field) type reduction of the ferromagnetic
moments, while below the blocking temperature T_b, chi(T) is suppressed by the
presence of energy barriers, the distributions of which scale with the particle
volumes obtained from transmission electron microscopy (TEM). This indication
for volume anisotropy is supported by scaling analyses of the shape of the
magnetic absorption chi''(T,omega) which reveal distribution functions for the
barriers being also consistent with the volume distributions observed by TEM.
Above 200 K, the magnetization isotherms M(H,T) display Langevin behavior
providing 2.5(1) mu_B per CoPt_3 in agreement with reports on bulk and thin
film CoPt_3. The non-Langevin shape of the magnetization curves at lower
temperatures is for the first time interpreted as anisotropic
superparamagnetism by taking into account an anisotropy energy of the
nanoparticles E_A(T). Using the magnitude and temperature variation of E_A(T),
the mean energy barriers and 'unphysical' small switching times of the
particles obtained from the analyses of chi''(T,omega) are explained. Below T_b
hysteresis loops appear and are quantitatively described by a blocking model,
which also ignores particle interactions, but takes the size distributions from
TEM and the conventional field dependence of E_A into account.Comment: 12 pages with 10 figures and 1 table. Version accepted for
publication in Phys. Rev. B . Two-column layou
Análise da aplicabilidade do custeio-meta na etapa de concepção de empreendimentos habitacionais de interesse social
Custeio-Meta é uma estratégia desenvolvida pela indústria para melhorar sistematicamente a qualidade do produto, entregando maior valor ao consumidor, respeitando o referencial de preço do mercado e mantendo estrito controle dos custos. Estudos recentes têm apontado caminhos para a adaptação dessa estratégia para a construção civil, apesar das características ímpares da produção de edifícios. Este trabalho apresenta uma análise da aplicabilidade do Custeio-Meta na etapa de concepção de empreendimentos habitacionais de interesse social. Foi realizado um estudo de caso no Programa de Arrendamento Residencial, no qual existe o envolvimento da empresa construtora desde as primeiras fases de planejamento do empreendimento. Também foram utilizados dados secundários gerados em dois estudos realizados anteriormente sobre a cadeia de negócios de empreendimentos e o processo de desenvolvimento do produto neste Programa. Os resultados sugerem que esse contexto propicia a aplicação do custeio-meta para que as necessidades dos clientes de tais empreendimentos, as quais normalmente não são totalmente atendidas devido ao teto estabelecido para financiamento, sejam melhor contempladas. Ao final são propostas diretrizes para melhorias no processo de projeto de forma a propiciar a aplicação do custeio-meta nesse contexto
- …