435 research outputs found

    Tests of mode coupling theory in a simple model for two-component miscible polymer blends

    Get PDF
    We present molecular dynamics simulations on the structural relaxation of a simple bead-spring model for polymer blends. The introduction of a different monomer size induces a large time scale separation for the dynamics of the two components. Simulation results for a large set of observables probing density correlations, Rouse modes, and orientations of bond and chain end-to-end vectors, are analyzed within the framework of the Mode Coupling Theory (MCT). An unusually large value of the exponent parameter is obtained. This feature suggests the possibility of an underlying higher-order MCT scenario for dynamic arrest.Comment: Revised version. Additional figures and citation

    Mobile particles in an immobile environment: Molecular Dynamics simulation of a binary Yukawa mixture

    Full text link
    Molecular dynamics computer simulations are used to investigate thedynamics of a binary mixture of charged (Yukawa) particles with a size-ratio of 1:5. We find that the system undergoes a phase transition where the large particles crystallize while the small particles remain in a fluid-like (delocalized) phase. Upon decreasing temperature below the transition, the small particles become increasingly localized on intermediate time scales. This is reflected in the incoherent intermediate scattering functions by the appearance of a plateau with a growing height. At long times, the small particles show a diffusive hopping motion. We find that these transport properties are related to structural correlations and the single-particle potential energy distribution of the small particles.Comment: 7 pages, 5 figure

    Nonlinear effects in charge stabilized colloidal suspensions

    Full text link
    Molecular Dynamics simulations are used to study the effective interactions in charged stabilized colloidal suspensions. For not too high macroion charges and sufficiently large screening, the concept of the potential of mean force is known to work well. In the present work, we focus on highly charged macroions in the limit of low salt concentrations. Within this regime, nonlinear corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)] have to be considered. For non--bulklike systems, such as isolated pairs or triples of macroions, we show, that nonlinear effects can become relevant, which cannot be described by the charge renormalization concept [S. Alexander et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of macroions, we find an almost perfect qualitative agreement between our simulation data and the primitive model. However, on a quantitative level, neither Debye-H\"uckel theory nor the charge renormalization concept can be confirmed in detail. This seems mainly to be related to the fact, that for small ion concentrations, microionic layers can strongly overlap, whereas, simultaneously, excluded volume effects are less important. In the case of isolated triples, where we compare between coaxial and triangular geometries, we find attractive corrections to pairwise additivity in the limit of small macroion separations and salt concentrations. These triplet interactions arise if all three microionic layers around the macroions exhibit a significant overlap. In contrast to the case of two isolated colloids, the charge distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure

    Frequency dependent specific heat of viscous silica

    Full text link
    We apply the Mori-Zwanzig projection operator formalism to obtain an expression for the frequency dependent specific heat c(z) of a liquid. By using an exact transformation formula due to Lebowitz et al., we derive a relation between c(z) and K(t), the autocorrelation function of temperature fluctuations in the microcanonical ensemble. This connection thus allows to determine c(z) from computer simulations in equilibrium, i.e. without an external perturbation. By considering the generalization of K(t) to finite wave-vectors, we derive an expression to determine the thermal conductivity \lambda from such simulations. We present the results of extensive computer simulations in which we use the derived relations to determine c(z) over eight decades in frequency, as well as \lambda. The system investigated is a simple but realistic model for amorphous silica. We find that at high frequencies the real part of c(z) has the value of an ideal gas. c'(\omega) increases quickly at those frequencies which correspond to the vibrational excitations of the system. At low temperatures c'(\omega) shows a second step. The frequency at which this step is observed is comparable to the one at which the \alpha-relaxation peak is observed in the intermediate scattering function. Also the temperature dependence of the location of this second step is the same as the one of the α\alpha-peak, thus showing that these quantities are intimately connected to each other. From c'(\omega) we estimate the temperature dependence of the vibrational and configurational part of the specific heat. We find that the static value of c(z) as well as \lambda are in good agreement with experimental data.Comment: 27 pages of Latex, 8 figure

    The Influence of Chemical Short Range Order on Atomic Diffusion in Al-Ni Melts

    Full text link
    We use inelastic neutron scattering and molecular dynamics (MD) simulation to investigate the chemical short range order (CSRO), visible through prepeaks in the structure factors, and its relation to self diffusion in Al-Ni melts. As a function of composition at 1795K Ni self diffusion coefficients from experiment and simulation exhibit a non-linear dependence with a pronounced increase on the Al-rich side. This comes along with a change in CSRO with increasing Al content that is related to a more dense packing of the atoms in Ni-rich Al-Ni systems.Comment: 11 pages, 4 figure

    Monte Carlo simulations of the solid-liquid transition in hard spheres and colloid-polymer mixtures

    Full text link
    Monte Carlo simulations at constant pressure are performed to study coexistence and interfacial properties of the liquid-solid transition in hard spheres and in colloid-polymer mixtures. The latter system is described as a one-component Asakura-Oosawa (AO) model where the polymer's degrees of freedom are incorporated via an attractive part in the effective potential for the colloid-colloid interactions. For the considered AO model, the polymer reservoir packing fraction is eta_p^r=0.1 and the colloid-polymer size ratio is q=sigma_p/\sigma=0.15 (with sigma_p and sigma the diameter of polymers and colloids, respectively). Inhomogeneous solid-liquid systems are prepared by placing the solid fcc phase in the middle of a rectangular simulation box creating two interfaces with the adjoined bulk liquid. By analyzing the growth of the crystalline region at various pressures and for different system sizes, the coexistence pressure p_co is obtained, yielding p_co=11.576 k_BT/sigma^3 for the hard sphere system and p_co=8.0 k_BT/sigma^3 for the AO model (with k_B the Boltzmann constant and T the temperature). Several order parameters are introduced to distinguish between solid and liquid phases and to describe the interfacial properties. From the capillary-wave broadening of the solid-liquid interface, the interfacial stiffness is obtained for the (100) crystalline plane, giving the values gamma=0.49 k_BT/sigma^2 for the hard-sphere system and gamma=0.95 k_BT/sigma^2 for the AO model.Comment: 11 pages, 13 figure

    The Debye-Waller factor of liquid silica: Theory and simulation

    Full text link
    We show that the prediction of mode-coupling theory for a model of a network-forming strong glass-former correctly describes the wave-vector dependence of the Debye-Waller factor. To obtain a good description it is important to take into account the triplet correlation function c_3, which we evaluate from a computer simulation. Our results support the possibility that this theory is able to accurately describe the non-ergodicity parameters of simple as well as of network-forming liquids.Comment: 5 pages of Latex, 3 figure

    Kinetics of Phase Separation in Thin Films: Simulations for the Diffusive Case

    Get PDF
    We study the diffusion-driven kinetics of phase separation of a symmetric binary mixture (AB), confined in a thin-film geometry between two parallel walls. We consider cases where (a) both walls preferentially attract the same component (A), and (b) one wall attracts A and the other wall attracts B (with the same strength). We focus on the interplay of phase separation and wetting at the walls, which is referred to as {\it surface-directed spinodal decomposition} (SDSD). The formation of SDSD waves at the two surfaces, with wave-vectors oriented perpendicular to them, often results in a metastable layered state (also referred to as ``stratified morphology''). This state is reminiscent of the situation where the thin film is still in the one-phase region but the surfaces are completely wet, and hence coated with thick wetting layers. This metastable state decays by spinodal fluctuations and crosses over to an asymptotic growth regime characterized by the lateral coarsening of pancake-like domains. These pancakes may or may not be coated by precursors of wetting layers. We use Langevin simulations to study this crossover and the growth kinetics in the asymptotic coarsening regime.Comment: 39 pages, 19 figures, submitted to Phys.Rev.

    Matrix controlled channel diffusion of sodium in amorphous silica

    Full text link
    To find the origin of the diffusion channels observed in sodium-silicate glasses, we have performed classical molecular dynamics simulations of Na2_2O--4SiO2_2 during which the mass of the Si and O atoms has been multiplied by a tuning coefficient. We observe that the channels disappear and that the diffusive motion of the sodium atoms vanishes if this coefficient is larger than a threshold value. Above this threshold the vibrational states of the matrix are not compatible with those of the sodium ions. We interpret hence the decrease of the diffusion by the absence of resonance conditions.Comment: 5 pages, 4 figure

    Apparent finite-size effects in the dynamics of supercooled liquids

    Get PDF
    Molecular dynamics simulations are performed for a supercooled simple liquid with changing the system size from N=108 to 10410^4 to examine possible finite-size effects. Although almost no systematic deviation is detected in the static pair correlation functions, it is demonstrated that the structural α\alpha relaxation in a small system becomes considerably slower than that in larger systems for temperatures below TcT_c at which the size of the cooperative particle motions becomes comparable to the unit cell length of the small system. The discrepancy increases with decreasing temperature.Comment: 4 pages 5 figure
    corecore