1,714 research outputs found

    Magneto-optical study of thermally annealed InAs-InGaAs-GaAs self-assembled quantum dots

    No full text
    We report a magneto-optical study of InAs-InGaAs-GaAs self-assembled quantum dots (QDs) subjected to post-growth thermal annealing at different temperatures. At low temperatures annealing strongly affects the bimodal distribution of QDs; at higher temperatures a strong blueshift of the emission occurs. Magnetophotoluminescence reveals that the annealing increases the QD size, with a larger effect occurring along the growth axis, and decreases the carrier effective masses. The main contribution to the blueshift is deduced to be an increase in the average Ga composition of the QDs. The inadvertent annealing which occurs during the growth of the upper AlGaAs cladding layer in laser structures is also studied

    Improved Temperature Performance of 1.31-mu/m Quantum Dot Lasers by Optimized Ridge Waveguide Design

    Get PDF
    In this letter, we demonstrate the importance of the fabricated device structure for the external differential efficiency, threshold current density, and maximum operating temperature for ground state operation of a 1.31-mu/m quantum dot laser. The introduction of a shallow ridge etch design and selective electroplating of the gold bondpads is demonstrated to offer improved performance in comparison to a deep ridge etch design with thinner evaporated gold bondpads

    Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1–x alloys

    Get PDF
    The nitrogen bonding configurations in GaNxAs1–x alloys grown by molecular beam epitaxy with 0.07=0.03, the nitrogen is found to exist in a single bonding configuration – the Ga–N bond; no interstitial nitrogen complexes are present. The amount of nitrogen in the alloys is estimated from the XPS using the N 1s photoelectron and Ga LMM Auger lines and is found to be in agreement with the composition determined by x-ray diffraction

    Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Get PDF
    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.Comment: 4 pages, 4 figures, to be published in J. Phys. Conf. Ser. for QD201

    Digging supplementary buried channels: investigating the notch architecture within the CCD pixels on ESA's Gaia satellite

    Get PDF
    The European Space Agency (ESA) Gaia satellite has 106 CCD image sensors which will suffer from increased charge transfer inefficiency (CTI) as a result of radiation damage. To aid the mitigation at low signal levels, the CCD design includes Supplementary Buried Channels (SBCs, otherwise known as `notches') within each CCD column. We present the largest published sample of Gaia CCD SBC Full Well Capacity (FWC) laboratory measurements and simulations based on 13 devices. We find that Gaia CCDs manufactured post-2004 have SBCs with FWCs in the upper half of each CCD that are systematically smaller by two orders of magnitude (<50 electrons) compared to those manufactured pre-2004 (thousands of electrons). Gaia's faint star (13 < G < 20 mag) astrometric performance predictions by Prod'homme et al. and Holl et al. use pre-2004 SBC FWCs as inputs to their simulations. However, all the CCDs already integrated onto the satellite for the 2013 launch are post-2004. SBC FWC measurements are not available for one of our five post-2004 CCDs but the fact it meets Gaia's image location requirements suggests it has SBC FWCs similar to pre-2004. It is too late to measure the SBC FWCs onboard the satellite and it is not possible to theoretically predict them. Gaia's faint star astrometric performance predictions depend on knowledge of the onboard SBC FWCs but as these are currently unavailable, it is not known how representative of the whole focal plane the current predictions are. Therefore, we suggest Gaia's initial in-orbit calibrations should include measurement of the onboard SBC FWCs. We present a potential method to do this. Faint star astrometric performance predictions based on onboard SBC FWCs at the start of the mission would allow satellite operating conditions or CTI software mitigation to be further optimised to improve the scientific return of Gaia.Comment: Accepted for publication in MNRAS, 16 pages, 19 figure

    Modelling Gaia CCD pixels with Silvaco 3D engineering software

    Get PDF
    Gaia will only achieve its unprecedented measurement accuracy requirements with detailed calibration and correction for radiation damage. We present our Silvaco 3D engineering software model of the Gaia CCD pixel and two of its applications for Gaia: (1) physically interpreting supplementary buried channel (SBC) capacity measurements (pocket-pumping and first pixel response) in terms of e2v manufacturing doping alignment tolerances; and (2) deriving electron densities within a charge packet as a function of the number of constituent electrons and 3D position within the charge packet as input to microscopic models being developed to simulate radiation damage.Comment: 4 pages, 3 figures, contributed poster, appearing in proceedings of the ELSA conference: Gaia, at the frontiers of astrometry, 7-11 June 2010, S\`evres, Pari

    Quantum state preparation in semiconductor dots by adiabatic rapid passage

    Full text link
    Preparation of a specific quantum state is a required step for a variety of proposed practical uses of quantum dynamics. We report an experimental demonstration of optical quantum state preparation in a semiconductor quantum dot with electrical readout, which contrasts with earlier work based on Rabi flopping in that the method is robust with respect to variation in the optical coupling. We use adiabatic rapid passage, which is capable of inverting single dots to a specified upper level. We demonstrate that when the pulse power exceeds a threshold for inversion, the final state is independent of power. This provides a new tool for preparing quantum states in semiconductor dots and has a wide range of potential uses.Comment: 4 pages, 4 figure

    Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs

    Full text link
    Current optical space telescopes rely upon silicon Charge Coupled Devices (CCDs) to detect and image the incoming photons. The performance of a CCD detector depends on its ability to transfer electrons through the silicon efficiently, so that the signal from every pixel may be read out through a single amplifier. This process of electron transfer is highly susceptible to the effects of solar proton damage (or non-ionizing radiation damage). This is because charged particles passing through the CCD displace silicon atoms, introducing energy levels into the semi-conductor bandgap which act as localized electron traps. The reduction in Charge Transfer Efficiency (CTE) leads to signal loss and image smearing. The European Space Agency's astrometric Gaia mission will make extensive use of CCDs to create the most complete and accurate stereoscopic map to date of the Milky Way. In the context of the Gaia mission CTE is referred to with the complementary quantity Charge Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that threatens Gaia's performances. We present here a detailed Monte Carlo model which has been developed to simulate the operation of a damaged CCD at the pixel electrode level. This model implements a new approach to both the charge density distribution within a pixel and the charge capture and release probabilities, which allows the reproduction of CTI effects on a variety of measurements for a large signal level range in particular for signals of the order of a few electrons. A running version of the model as well as a brief documentation and a few examples are readily available at http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5 table

    Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests

    Get PDF
    We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response

    Mass-Enhanced Fermi Liquid Ground State in Na1.5_{1.5}Co2_2O4_4

    Full text link
    Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na1.5_{1.5}Co2_2O4_4 as a function of temperature TT. Below a characteristic temperature TT^*=30-40 K, electrical resistivity shows a metallic conductivity with a T2T^2 behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at \sim14 K. The electronic specific heat coefficient γ\gamma is \sim60 mJ/molK2^2 at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in dd-electron heavy fermion compound LiV2_2O4_4.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004
    corecore