1,714 research outputs found
Magneto-optical study of thermally annealed InAs-InGaAs-GaAs self-assembled quantum dots
We report a magneto-optical study of InAs-InGaAs-GaAs self-assembled quantum dots (QDs) subjected to post-growth thermal annealing at different temperatures. At low temperatures annealing strongly affects the bimodal distribution of QDs; at higher temperatures a strong blueshift of the emission occurs. Magnetophotoluminescence reveals that the annealing increases the QD size, with a larger effect occurring along the growth axis, and decreases the carrier effective masses. The main contribution to the blueshift is deduced to be an increase in the average Ga composition of the QDs. The inadvertent annealing which occurs during the growth of the upper AlGaAs cladding layer in laser structures is also studied
Improved Temperature Performance of 1.31-mu/m Quantum Dot Lasers by Optimized Ridge Waveguide Design
In this letter, we demonstrate the importance of the fabricated device structure for the external differential efficiency, threshold current density, and maximum operating temperature for ground state operation of a 1.31-mu/m quantum dot laser. The introduction of a shallow ridge etch design and selective electroplating of the gold bondpads is demonstrated to offer improved performance in comparison to a deep ridge etch design with thinner evaporated gold bondpads
Core-level photoemission spectroscopy of nitrogen bonding in GaNxAs1–x alloys
The nitrogen bonding configurations in GaNxAs1–x alloys grown by molecular beam epitaxy with 0.07=0.03, the nitrogen is found to exist in a single bonding configuration – the Ga–N bond; no interstitial nitrogen complexes are present. The amount of nitrogen in the alloys is estimated from the XPS using the N 1s photoelectron and Ga LMM Auger lines and is found to be in agreement with the composition determined by x-ray diffraction
Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation
We review the practical conditions required to achieve a non-equilibrium BEC
driven by quantum dynamics in a system comprising a microcavity field mode and
a distribution of localised two-level systems driven to a step-like population
inversion profile. A candidate system based on eight 3.8nm layers of
In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the
total dipole strength which can be coupled to the field mode.Comment: 4 pages, 4 figures, to be published in J. Phys. Conf. Ser. for QD201
Digging supplementary buried channels: investigating the notch architecture within the CCD pixels on ESA's Gaia satellite
The European Space Agency (ESA) Gaia satellite has 106 CCD image sensors
which will suffer from increased charge transfer inefficiency (CTI) as a result
of radiation damage. To aid the mitigation at low signal levels, the CCD design
includes Supplementary Buried Channels (SBCs, otherwise known as `notches')
within each CCD column. We present the largest published sample of Gaia CCD SBC
Full Well Capacity (FWC) laboratory measurements and simulations based on 13
devices. We find that Gaia CCDs manufactured post-2004 have SBCs with FWCs in
the upper half of each CCD that are systematically smaller by two orders of
magnitude (<50 electrons) compared to those manufactured pre-2004 (thousands of
electrons). Gaia's faint star (13 < G < 20 mag) astrometric performance
predictions by Prod'homme et al. and Holl et al. use pre-2004 SBC FWCs as
inputs to their simulations. However, all the CCDs already integrated onto the
satellite for the 2013 launch are post-2004. SBC FWC measurements are not
available for one of our five post-2004 CCDs but the fact it meets Gaia's image
location requirements suggests it has SBC FWCs similar to pre-2004. It is too
late to measure the SBC FWCs onboard the satellite and it is not possible to
theoretically predict them. Gaia's faint star astrometric performance
predictions depend on knowledge of the onboard SBC FWCs but as these are
currently unavailable, it is not known how representative of the whole focal
plane the current predictions are. Therefore, we suggest Gaia's initial
in-orbit calibrations should include measurement of the onboard SBC FWCs. We
present a potential method to do this. Faint star astrometric performance
predictions based on onboard SBC FWCs at the start of the mission would allow
satellite operating conditions or CTI software mitigation to be further
optimised to improve the scientific return of Gaia.Comment: Accepted for publication in MNRAS, 16 pages, 19 figure
Modelling Gaia CCD pixels with Silvaco 3D engineering software
Gaia will only achieve its unprecedented measurement accuracy requirements
with detailed calibration and correction for radiation damage. We present our
Silvaco 3D engineering software model of the Gaia CCD pixel and two of its
applications for Gaia: (1) physically interpreting supplementary buried channel
(SBC) capacity measurements (pocket-pumping and first pixel response) in terms
of e2v manufacturing doping alignment tolerances; and (2) deriving electron
densities within a charge packet as a function of the number of constituent
electrons and 3D position within the charge packet as input to microscopic
models being developed to simulate radiation damage.Comment: 4 pages, 3 figures, contributed poster, appearing in proceedings of
the ELSA conference: Gaia, at the frontiers of astrometry, 7-11 June 2010,
S\`evres, Pari
Quantum state preparation in semiconductor dots by adiabatic rapid passage
Preparation of a specific quantum state is a required step for a variety of
proposed practical uses of quantum dynamics. We report an experimental
demonstration of optical quantum state preparation in a semiconductor quantum
dot with electrical readout, which contrasts with earlier work based on Rabi
flopping in that the method is robust with respect to variation in the optical
coupling. We use adiabatic rapid passage, which is capable of inverting single
dots to a specified upper level. We demonstrate that when the pulse power
exceeds a threshold for inversion, the final state is independent of power.
This provides a new tool for preparing quantum states in semiconductor dots and
has a wide range of potential uses.Comment: 4 pages, 4 figure
Electrode level Monte Carlo model of radiation damage effects on astronomical CCDs
Current optical space telescopes rely upon silicon Charge Coupled Devices
(CCDs) to detect and image the incoming photons. The performance of a CCD
detector depends on its ability to transfer electrons through the silicon
efficiently, so that the signal from every pixel may be read out through a
single amplifier. This process of electron transfer is highly susceptible to
the effects of solar proton damage (or non-ionizing radiation damage). This is
because charged particles passing through the CCD displace silicon atoms,
introducing energy levels into the semi-conductor bandgap which act as
localized electron traps. The reduction in Charge Transfer Efficiency (CTE)
leads to signal loss and image smearing. The European Space Agency's
astrometric Gaia mission will make extensive use of CCDs to create the most
complete and accurate stereoscopic map to date of the Milky Way. In the context
of the Gaia mission CTE is referred to with the complementary quantity Charge
Transfer Inefficiency (CTI = 1-CTE). CTI is an extremely important issue that
threatens Gaia's performances. We present here a detailed Monte Carlo model
which has been developed to simulate the operation of a damaged CCD at the
pixel electrode level. This model implements a new approach to both the charge
density distribution within a pixel and the charge capture and release
probabilities, which allows the reproduction of CTI effects on a variety of
measurements for a large signal level range in particular for signals of the
order of a few electrons. A running version of the model as well as a brief
documentation and a few examples are readily available at
http://www.strw.leidenuniv.nl/~prodhomme/cemga.php as part of the CEMGA java
package (CTI Effects Models for Gaia).Comment: Accepted by MNRAS on 13 February 2011. 15 pages, 7 figures and 5
table
Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests
We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response
Mass-Enhanced Fermi Liquid Ground State in NaCoO
Magnetic, transport, and specific heat measurements have been performed on
layered metallic oxide NaCoO as a function of temperature .
Below a characteristic temperature =3040 K, electrical resistivity
shows a metallic conductivity with a behavior and magnetic susceptibility
deviates from the Curie-Weiss behavior showing a broad peak at 14 K. The
electronic specific heat coefficient is 60 mJ/molK at 2 K.
No evidence for magnetic ordering is found. These behaviors suggest the
formation of mass-enhanced Fermi liquid ground state analogous to that in
-electron heavy fermion compound LiVO.Comment: 4 pages, 4 figures, to be published in Phys. Rev. B 69 (2004
- …
