112 research outputs found
Galaxy clustering constraints on deviations from Newtonian gravity at cosmological scales II: Perturbative and numerical analyses of power spectrum and bispectrum
We explore observational constraints on possible deviations from Newtonian
gravity by means of large-scale clustering of galaxies. We measure the power
spectrum and the bispectrum of Sloan Digital Sky Survey galaxies and compare
the result with predictions in an empirical model of modified gravity. Our
model assumes an additional Yukawa-like term with two parameters that
characterize the amplitude and the length scale of the modified gravity. The
model predictions are calculated using two methods; the second-order
perturbation theory and direct N-body simulations. These methods allow us to
study non-linear evolution of large-scale structure. Using the simulation
results, we find that perturbation theory provides reliable estimates for the
power spectrum and the bispectrum in the modified Newtonian model. We also
construct mock galaxy catalogues from the simulations, and derive constraints
on the amplitude and the length scale of deviations from Newtonian gravity. The
resulting constraints from power spectrum are consistent with those obtained in
our earlier work, indicating the validity of the previous empirical modeling of
gravitational nonlinearity in the modified Newtonian model. If linear biasing
is adopted, the bispectrum of the SDSS galaxies yields constraints very similar
to those from the power spectrum. If we allow for the nonlinear biasing
instead, we find that the ratio of the quadratic to linear biasing
coefficients, b_2/b_1, should satisfy -0.4 < b_2/b_1<0.3 in the modified
Newtonian model.Comment: 12 pages, 7 figure
Higher-Order Angular Galaxy Correlations in the SDSS: Redshift and Color Dependence of non-Linear Bias
We present estimates of the N-point galaxy, area-averaged, angular
correlation functions () for = 2,...,7 for
galaxies from the fifth data release of the Sloan Digital Sky Survey. Our
parent sample is selected from galaxies with , and is the
largest ever used to study higher-order correlations. We subdivide this parent
sample into two volume limited samples using photometric redshifts, and these
two samples are further subdivided by magnitude, redshift, and color (producing
early- and late-type galaxy samples) to determine the dependence of
() on luminosity, redshift, and galaxy-type. We
measure () using oversampling techniques and use them
to calculate the projected, . Using models derived from theoretical
power-spectra and perturbation theory, we measure the bias parameters and
, finding that the large differences in both bias parameters ( and
) between early- and late-type galaxies are robust against changes in
redshift, luminosity, and , and that both terms are consistently
smaller for late-type galaxies. By directly comparing their higher-order
correlation measurements, we find large differences in the clustering of
late-type galaxies at redshifts lower than 0.3 and those at redshifts higher
than 0.3, both at large scales ( is larger by at ) and
small scales (large amplitudes are measured at small scales only for ,
suggesting much more merger driven star formation at ). Finally, our
measurements of suggest both that and is negative.Comment: 46 pages, 19 figures, Accepted to Ap
Can we detect Hot or Cold spots in the CMB with Minkowski Functionals?
In this paper, we investigate the utility of Minkowski Functionals as a probe
of cold/hot disk-like structures in the CMB. In order to construct an accurate
estimator, we resolve a long-standing issue with the use of Minkowski
Functionals as probes of the CMB sky -- namely that of systematic differences
("residuals") when numerical and analytical MF are compared. We show that such
residuals are in fact by-products of binning, and not caused by pixelation or
masking as originally thought. We then derive a map-independent estimator that
encodes the effects of binning, applicable to beyond our present work. Using
this residual-free estimator, we show that small disk-like effects (as claimed
by Vielva et al.) can be detected only when a large sample of such maps are
averaged over. In other words, our estimator is noise-dominated for small disk
sizes at WMAP resolution. To confirm our suspicion, we apply our estimator to
the WMAP7 data to obtain a null result.Comment: 15 pages, 13 figure
Note on Redshift Distortion in Fourier Space
We explore features of redshift distortion in Fourier analysis of N-body
simulations. The phases of the Fourier modes of the dark matter density
fluctuation are generally shifted by the peculiar motion along the line of
sight, the induced phase shift is stochastic and has probability distribution
function (PDF) symmetric to the peak at zero shift while the exact shape
depends on the wave vector, except on very large scales where phases are
invariant by linear perturbation theory. Analysis of the phase shifts motivates
our phenomenological models for the bispectrum in redshift space. Comparison
with simulations shows that our toy models are very successful in modeling
bispectrum of equilateral and isosceles triangles at large scales. In the
second part we compare the monopole of the power spectrum and bispectrum in the
radial and plane-parallel distortion to test the plane-parallel approximation.
We confirm the results of Scoccimarro (2000) that difference of power spectrum
is at the level of 10%, in the reduced bispectrum such difference is as small
as a few percents. However, on the plane perpendicular to the line of sight of
k_z=0, the difference in power spectrum between the radial and plane-parallel
approximation can be more than 10%, and even worse on very small scales. Such
difference is prominent for bispectrum, especially for those configurations of
tilted triangles. The non-Gaussian signals under radial distortion on small
scales are systematically biased downside than that in plane-parallel
approximation, while amplitudes of differences depend on the opening angle of
the sample to the observer. The observation gives warning to the practice of
using the power spectrum and bispectrum measured on the k_z=0 plane as
estimation of the real space statistics.Comment: 15 pages, 8 figures. Accepted for publication in ChJA
Metamaterial-Inspired Quad-Band Notch Filter for LTE Band Receivers and WPT Applications
A new compact quad-band notch filter (QBNF) based on the extended composite right and left-handed transmission line (E-CRLH TL) has been presented. As known, E-CRLH TL behaves like a quad-band structure. A microstrip TL which is loaded with an open-ended ECRLH TL is presented as a QBNF. Four unwanted frequencies were used in a dual-band LTE receiver as four notch frequencies which must be eliminated (0.9 GHz, 1.3 GHz, 2.55 GHz, and 3.35 GHz). Also, this QBNF can be applied to simultaneous wireless power and data transfer (SWPDT) system to isolate the wireless power circuit from the data communication circuit. A design technique for the proposed QBNF is presented and its performance is validated using full-wave simulation results and theoretical analysis. The main advantage of this design is an overall rejection greater than 20dB at selected unwanted frequencies. Good agreements between the fullwave simulation and equivalent circuit model results have been achieved which verified the effectiveness of the proposed circuit model. The proposed QBNF is designed on an FR-4 substrate and the dimension of the proposed QBNF is 20 * 22 mm
The defect variance of random spherical harmonics
The defect of a function is defined as the
difference between the measure of the positive and negative regions. In this
paper, we begin the analysis of the distribution of defect of random Gaussian
spherical harmonics. By an easy argument, the defect is non-trivial only for
even degree and the expected value always vanishes. Our principal result is
obtaining the asymptotic shape of the defect variance, in the high frequency
limit. As other geometric functionals of random eigenfunctions, the defect may
be used as a tool to probe the statistical properties of spherical random
fields, a topic of great interest for modern Cosmological data analysis.Comment: 19 page
Limits on Primordial Non-Gaussianity from Minkowski Functionals of the WMAP Temperature Anisotropies
We present an analysis of the Minkowski Functionals (MFs) describing the WMAP
three-year temperature maps to place limits on possible levels of primordial
non-Gaussianity. In particular, we apply perturbative formulae for the MFs to
give constraints on the usual non-linear coupling constant fNL. The theoretical
predictions are found to agree with the MFs of simulated CMB maps including the
full effects of radiative transfer. The agreement is also very good even when
the simulation maps include various observational artifacts, including the
pixel window function, beam smearing, inhomogeneous noise and the survey mask.
We find accordingly that these analytical formulae can be applied directly to
observational measurements of fNL without relying on non-Gaussian simulations.
Considering the bin-to-bin covariance of the MFs in WMAP in a chi-square
analysis, we find that the primordial non-Gaussianity parameter is constrained
to lie in the range -70<fNL<91 at 95% C.L. using the Q+V+W co-added maps.Comment: 9 pages, 4 figures, accpeted for publication in MNRA
Measuring our universe from galaxy redshift surveys
Galaxy redshift surveys have achieved significant progress over the last
couple of decades. Those surveys tell us in the most straightforward way what
our local universe looks like. While the galaxy distribution traces the bright
side of the universe, detailed quantitative analyses of the data have even
revealed the dark side of the universe dominated by non-baryonic dark matter as
well as more mysterious dark energy (or Einstein's cosmological constant). We
describe several methodologies of using galaxy redshift surveys as cosmological
probes, and then summarize the recent results from the existing surveys.
Finally we present our views on the future of redshift surveys in the era of
Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living
Reviews in Relativity, http://www.livingreviews.org/lrr-2004-
A geometric description of the non-Gaussianity generated at the end of multi-field inflation
In this paper we mainly focus on the curvature perturbation generated at the
end of multi-field inflation, such as the multi-brid inflation. Since the
curvature perturbation is produced on the super-horizon scale, the bispectrum
and trispectrum have a local shape. The size of bispectrum is measured by
and the trispectrum is characterized by two parameters and
. For simplicity, the trajectory of inflaton is assumed to be a
straight line in the field space and then the entropic perturbations do not
contribute to the curvature perturbation during inflation. As long as the
background inflaton path is not orthogonal to the hyper-surface for inflation
to end, the entropic perturbation can make a contribution to the curvature
perturbation at the end of inflation and a large local-type non-Gaussiantiy is
expected. An interesting thing is that the non-Gaussianity parameters are
completely determined by the geometric properties of the hyper-surface of the
end of inflation. For example, is proportional to the curvature of the
curve on this hyper-surface along the adiabatic direction and is
related to the change of the curvature radius per unit arc-length of this
curve. Both and can be positive or negative respectively, but
must be positive and not less than .Comment: 19 pages, 4 figures; refs added; a correction to \tau_{NL} for
n-field inflation added, version accepted for publication in JCA
Curvaton Dynamics and the Non-Linearity Parameters in Curvaton Model
We investigate the curvaton dynamics and the non-linearity parameters in
curvaton model with potential slightly deviating from the quadratic form in
detail. The non-linearity parameter will show up due to the curvaton
self-interaction. We also point out that the leading order of non-quadratic
term in the curvaton potential can be negative, for example in the axion-type
curvaton model. If a large positive is detected, the axion-type
curvaton model will be preferred.Comment: 14 pages, 4 figures; refs adde
- …