173 research outputs found

    First-principle solubilities of alkali and alkaline earth metals in Mg-B alloys

    Full text link
    By devising a novel framework, we present a comprehensive theoretical study of solubilities of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Be, Ca, Sr, Ba) metals in the he boron-rich Mg-B system. The study is based on first-principle calculations of solutes formation energies in MgB2_2, MgB4_4, MgB7_7 alloys and subsequent statistical-thermodynamical evaluation of solubilities. The advantage of the approach consists in considering all the known phase boundaries in the ternary phase diagram. Substitutional Na, Ca, and Li demonstrate the largest solubilities, and Na has the highest (0.5-1 % in MgB7_7 at T=650−1000T=650-1000 K). All the considered interstitials have negligible solubilities. The solubility of Be in MgB7_7 can not be determined because the corresponding low-solubility formation energy is negative indicating the existence of an unknown ternary ground state. We have performed a high-throughput search of ground states in binary Mg-B, Mg-AA, and B-AA systems, and we construct the ternary phase diagrams of Mg-B-AA alloys based on the stable binary phases. Despite its high temperature observations, we find that Sr9_{9}Mg38_{38} is not a low-temperature equilibrium structure. We also determine two new possible ground states CaB4_{4} and RbB4_{4}, not yet observed experimentally.Comment: 5 figure

    Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion

    Get PDF
    Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present

    Ovarian cancer stem cells: still an elusive entity?

    Full text link

    Angiotensin-(1-7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas.

    No full text
    The renin-angiotensin system not only plays a critical role in blood pressure control but is also involved in learning and memory mechanisms. In addition to angiotensin (Ang) II, Ang-(1-7) may also have important biological activities in the brain. Here, we show for the first time that Ang-(1-7) enhances long-term potentiation (LTP) in the CA1 region of the hippocampus. Our studies with AT1 receptor antagonists and selective Ang-(1-7) receptor antagonists demonstrate the existence of a distinct Ang-(1-7) receptor in the brain, the G-protein-coupled receptor Mas, encoded by the Mas protooncogene. We also show that the genetic deletion of this receptor abolishes the Ang-(1-7)-induced enhancement of LTP. Thus, we firstly demonstrate that Ang-(1-7) influences the induction of LTP in limbic structures implicating its distinct function in learning and memory mechanisms; secondly, we have identified Mas as a functional receptor for Ang-(1-7) in the brain

    Angiotensin-(1-7) enhances LTP in the hippocampus through the G-protein-coupled receptor Mas.

    No full text
    The renin-angiotensin system not only plays a critical role in blood pressure control but is also involved in learning and memory mechanisms. In addition to angiotensin (Ang) II, Ang-(1-7) may also have important biological activities in the brain. Here, we show for the first time that Ang-(1-7) enhances long-term potentiation (LTP) in the CA1 region of the hippocampus. Our studies with AT1 receptor antagonists and selective Ang-(1-7) receptor antagonists demonstrate the existence of a distinct Ang-(1-7) receptor in the brain, the G-protein-coupled receptor Mas, encoded by the Mas protooncogene. We also show that the genetic deletion of this receptor abolishes the Ang-(1-7)-induced enhancement of LTP. Thus, we firstly demonstrate that Ang-(1-7) influences the induction of LTP in limbic structures implicating its distinct function in learning and memory mechanisms; secondly, we have identified Mas as a functional receptor for Ang-(1-7) in the brain

    Der Einfluß des Vigantols auf den Frakturcallus beim gesunden Versuchstier

    No full text
    • …
    corecore