228 research outputs found
Physical Properties, Star Formation, and Active Galactic Nucleus Activity in Balmer Break Galaxies at 0 < z < 1
We present a spectroscopic study with the derivation of the physical
properties of 37 Balmer break galaxies, which have the necessary lines to
locate them in star-forming-AGN diagnostic diagrams. These galaxies span a
redshift range from 0.045 to 0.93 and are somewhat less massive than similar
samples of previous works. The studied sample has multiwavelength photometric
data coverage from the ultraviolet to MIR Spitzer bands. We investigate the
connection between star formation and AGN activity via optical, mass-excitation
(MEx) and MIR diagnostic diagrams. Through optical diagrams, 31 (84%)
star-forming galaxies, 2 (5%) composite galaxies and 3 (8%) AGNs were
classified, whereas from the MEx diagram only one galaxy was classified as AGN.
A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands.
Of these, 3 AGN candidates were not classified as AGN in the optical diagrams,
suggesting they are dusty/obscured AGNs, or that nuclear star formation has
diluted their contributions. Furthermore, the relationship between SFR surface
density (\Sigma_{SFR}) and stellar mass surface density per time unit
(\Sigma_{M_{\ast}/\tau}) as a function of redshift was investigated using the
[OII] \lambda3727, 3729, H\alpha \lambda6563 luminosities, which revealed that
both quantities are larger for higher redshift galaxies. We also studied the
SFR and SSFR versus stellar mass and color relations, with the more massive
galaxies having higher SFR values but lower SSFR values than less massive
galaxies. These results are consistent with previous ones showing that, at a
given mass, high-redshift galaxies have on average larger SFR and SSFR values
than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values
than redder galaxies and for a given color the SSFR is larger for higher
redshift galaxies.Comment: preprint version, 36 pages, 17 figures, 3 tables, accepted for
publication in the Astrophysical Journa
AzTEC/ASTE 1.1-mm Survey of the AKARI Deep Field South: source catalogue and number counts
We present results of a 1.1 mm deep survey of the AKARI Deep Field South
(ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment
(ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of
0.32-0.71 mJy. This is one of the deepest and widest maps thus far at
millimetre and submillimetre wavelengths. We uncovered 198 sources with a
significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources
in a contiguous region. Most of the sources are not detected in the
far-infrared bands of the AKARI satellite, suggesting that they are mostly at z
~ 1.5 given the detection limits. We constructed differential and cumulative
number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the
SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest
constraints on the faint end. The integration of the best-fit number counts in
the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to
the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the
large fraction of the CIB originates from faint sources of which the number
counts are not yet constrained. We estimate the cosmic star-formation rate
density contributed by 1.1 mm sources with >=1 mJy using the best-fit number
counts in the ADF-S and find that it is lower by about a factor of 5-10
compared to those derived from UV/optically-selected galaxies at z ~ 2-3. The
fraction of stellar mass of the present-day universe produced by 1.1 mm sources
with >=1 mJy at z >= 1 is ~20%, calculated by the time integration of the
star-formation rate density. If we consider the recycled fraction of >0.4,
which is the fraction of materials forming stars returned to the interstellar
medium, the fraction of stellar mass produced by 1.1 mm sources decrease to
<~10%.Comment: 15 pages, 12 figure, accepted for publication in MNRA
Design and Performance of the Wide-Field X-Ray Monitor on Board the High-Energy Transient Explorer 2
The Wide-field X-ray Monitor (WXM) is one of the scientific instruments
carried on the High Energy Transient Explorer 2 (HETE-2) satellite launched on
2000 October 9. HETE-2 is an international mission consisting of a small
satellite dedicated to provide broad-band observations and accurate
localizations of gamma-ray bursts (GRBs). A unique feature of this mission is
its capability to determine and transmit GRB coordinates in almost real-time
through the burst alert network. The WXM consists of three elements: four
identical Xe-filled one-dimensional position-sensitive proportional counters,
two sets of one-dimensional coded apertures, and the main electronics. The WXM
counters are sensitive to X-rays between 2 keV and 25 keV within a
field-of-view of about 1.5 sr, with a total detector area of about 350 cm.
The in-flight triggering and localization capability can produce a real-time
GRB location of several to 30 arcmin accuracy, with a limiting sensitivity of
erg cm. In this report, the details of the mechanical
structure, electronics, on-board software, ground and in-flight calibration,
and in-flight performance of the WXM are discussed.Comment: 28 pages, 24 figure
SPICA deep cosmological survey: from AKARI to SPICA
On the basis of the results of the AKARI far-infrared deep surveys, we propose a multi-wavelength far-infrared deep cosmological survey with SAFARI on SPICA. We have carried out a far-infrared deep cosmological survey with AKARI, and successfully obtained the galaxy counts and new limits on the absolute brightness of the cosmic far-infrared background. These results provide strong constraints on evolutionary scenarios, and suggest the necessity for a new model to explain galaxy evolution. Thanks to the excellent sensitivity and spatial resolution of SPICA/SAFARI, we will be able to resolve the cosmic infrared background into individual objects with 3 times or more higher spatial resolution than that of AKARI, and will also be able to conduct infrared photometry and spectroscopy on those ob jects. The far-infrared deep survey with SPICA/SAFARI will be an ideal opportunity to reveal the origin of the cosmic far-infrared background residual brightness and fluctuations. These observation will allow us to reveal the star formation history in the early Universe without the uncertainty of dust attenuation, which is essential if we are to understand the process of galaxy formation
- …