633 research outputs found
Physics of collisionless phase mixing
Previous studies of phase mixing of ion cyclotron (IC), Alfv\'enic, waves in
the collisionless regime have established the generation of parallel electric
field and hence acceleration of electrons in the regions of transverse density
inhomogeneity. However, outstanding issues were left open. Here we use 2.5D,
relativistic, fully electromagnetic PIC (Particle-In-Cell) code and an analytic
MHD (Magnetohydrodynamic) formulation, to establish the following points: (i)
Using the generalised Ohm's law we find that the parallel electric field is
supported mostly by the electron pressure tensor, with a smaller contribution
from the electron inertia term. (ii) The generated parallel electric field and
the fraction of accelerated electrons are independent of the IC wave frequency
remaining at a level of six orders of magnitude larger than the Dreicer value
and approximately 20% respectively. The generated parallel electric field and
the fraction of accelerated electrons increase with the increase of IC wave
amplitude. The generated parallel electric field seems to be independent of
plasma beta, while the fraction of accelerated electrons strongly increases
with the decrease of plasma beta (for plasma beta of 0.0001 the fraction of
accelerated electrons can be as large as 47%). (iii) In the collisionless
regime IC wave dissipation length (that is defined as the distance over which
the wave damps) variation with the driving frequency shows a deviation from the
analytical MHD result, which we attribute to a possible frequency dependence of
the effective resistivity. (iv) Effective anomalous resistivity, inferred from
our numerical simulations, is at least four orders of magnitude larger than the
classical Spitzer value.Comment: Final version, accepted for publication in Physics of Plasma
Magnetic reconnection during collisionless, stressed, X-point collapse using Particle-in-Cell simulation
Two cases of weakly and strongly stressed X-point collapse were considered.
Here descriptors weakly and strongly refer to 20 % and 124 % unidirectional
spatial compression of the X-point, respectively. In the weakly stressed case,
the reconnection rate, defined as the out-of-plane electric field in the
X-point (the magnetic null) normalised by the product of external magnetic
field and Alfv\'en speeds, peaks at 0.11, with its average over 1.25 Alfv\'en
times being 0.04. Electron energy distribution in the current sheet, at the
high energy end of the spectrum, shows a power law distribution with the index
varying in time, attaining a maximal value of -4.1 at the final simulation time
step (1.25 Alfv\'en times). In the strongly stressed case, magnetic
reconnection peak occurs 3.4 times faster and is more efficient. The peak
reconnection rate now attains value 2.5, with the average reconnection rate
over 1.25 Alfv\'en times being 0.5. The power law energy spectrum for the
electrons in the current sheet attains now a steeper index of -5.5, a value
close to the ones observed in the vicinity of X-type region in the Earth's
magneto-tail. Within about one Alfv\'en time, 2% and 20% of the initial
magnteic energy is converted into heat and accelerated particle energy in the
case of weak and strong stress, respectively. In the both cases, during the
peak of the reconnection, the quadruple out-of-plane magnetic field is
generated, hinting possibly to the Hall regime of the reconnection. These
results strongly suggest the importance of the collionless, stressed X-point
collapse as a possible contributing factor to the solution of the solar coronal
heating problem or more generally, as an efficient mechanism of converting
magnetic energy into heat and super-thermal particle energy.Comment: Final Accepted Version (Physics of Plasmas in Press 2007
The Gamow-Teller States in Relativistic Nuclear Models
The Gamow-Teller(GT) states are investigated in relativistic models. The
Landau-Migdal(LM) parameter is introduced in the Lagrangian as a contact term
with the pseudo-vector coupling. In the relativistic model the total GT
strength in the nucleon space is quenched by about 12% in nuclear matter and by
about 6% in finite nuclei, compared with the one of the Ikeda-Fujii-Fujita sum
rule. The quenched amount is taken by nucleon-antinucleon excitations in the
time-like region. Because of the quenching, the relativistic model requires a
larger value of the LM parameter than non-relativistic models in describing the
excitation energy of the GT state. The Pauli blocking terms are not important
for the description of the GT states.Comment: REVTeX4, no figure
Effects of the Neutron Spin-Orbit Density on Nuclear Charge Density in Relativistic Models
The neutron spin-orbit density contributes to the nuclear charge density as a
relativistic effect. The contribution is enhanced by the effective mass
stemming from the Lorentz-scalar potential in relativistic models. This
enhancement explains well the difference between the cross sections of elastic
electron scattering off Ca and Ca which was not reproduced in
non-relativistic models. The spin-orbit density will be examined in more detail
in electron scattering off unstable nuclei which would be available in the
future.Comment: 4 pages with 3 eps figures, revte
Anterior Pituitary Progenitor Cells Express Costimulatory Molecule 4Ig-B7-H31
Abstract
Stem/Progenitor cells in the postnatal pituitary gland are embedded in a marginal cell layer around Rathke’s pouch. However, the nature and behavior of anterior pituitary progenitor cells remain unclear. We established bovine anterior pituitary progenitor cell line (BAPC)-1 from the anterior pituitary gland, which expressed stem/progenitor cell-related genes and several inflammatory cytokines. To characterize and localize these pituitary progenitor cells, we produced a mAb (12B mAb) against BAPC-1. The 12B mAb recognized the 4Ig-B7-H3 molecule, which is a costimulatory molecule and negative regulator in T cell activation. WC1+ γδ T cells in young bovine PBMC express the 4Ig-B7-H3 molecule, but few or no 4Ig-B7-H3-immunoreactive cells are expressed in PBMC in adult cattle. The 12B-immunoreactive cells in the bovine anterior pituitary gland were localized around Rathke’s pouch and expressed IL-18 and MHC class II. However, the number of 12B-immunoreactive cells was lower in adult than in young cattle. BAPC-1 expressed IL-18 and MHC class II, and demonstrated phagocytotic activity. BAPC-1 also had the ability to promote CD25 expression in PBMC after 5 days of coculture, and blocking 4Ig-B7-H3 × 12B mAb enhanced their expression of CD25. In addition, the 12B-immunoreactive cells were observed around the pars tuberalis closely bordering the median eminence and in the blood vessels of the primary portal plexus in the anterior pituitary gland. These results suggest that an established BAPC-1 may originate from these progenitor cells, and that the progenitor cells with 4Ig-B7-H3 may play a critical role in the immunoendocrine network.</jats:p
Self-folding of supramolecular polymers into bioinspired topology.
Folding one-dimensional polymer chains into well-defined topologies represents an important organization process for proteins, but replicating this process for supramolecular polymers remains a challenging task. We report supramolecular polymers that can fold into protein-like topologies. Our approach is based on curvature-forming supramolecular rosettes, which affords kinetic control over the extent of helical folding in the resulting supramolecular fibers by changing the cooling rate for polymerization. When using a slow cooling rate, we obtained misfolded fibers containing a minor amount of helical domains that folded on a time scale of days into unique topologies reminiscent of the protein tertiary structures. Thermodynamic analysis of fibers with varying degrees of folding revealed that the folding is accompanied by a large enthalpic gain. The self-folding proceeds via ordering of misfolded domains in the main chain using helical domains as templates, as fully misfolded fibers prepared by a fast cooling rate do not self-fold
Design and performance of a gain calibration system for the POLARBEAR-2a receiver system at the Simons Array cosmic microwave background experiment
We present an advanced system for calibrating the detector gain responsivity with a chopped thermal source for POLARBEAR-2a, which is the first receiver system of a cosmic microwave background (CMB) polarimetry experiment: the Simons Array. Intensity-to-polarization leakage due to calibration errors between detectors can be a significant source of systematic error for a polarization-sensitive experiment. To suppress this systematic uncertainty, POLARBEAR-2a calibrates the detector gain responsivities by observing a chopped thermal source before and after each period of science observations. The system includes a high-temperature ceramic heater that emits blackbody radiation covering a wide frequency range and an optical chopper to modulate the radiation signal. We discuss the experimental requirements of gain calibration and system design to calibrate POLARBEAR-2a. We evaluate the performance of our system during the early commissioning of the receiver system. This calibration system is promising for the future generation of CMB ground-based polarization observations
- …