4,963 research outputs found
Precise measurement of the top quark mass in the dilepton channel at D0
We measure the top quark mass (mt) in ppbar collisions at a center of mass
energy of 1.96 TeV using dilepton ttbar->W+bW-bbar->l+nubl-nubarbbar events,
where l denotes an electron, a muon, or a tau that decays leptonically. The
data correspond to an integrated luminosity of 5.4 fb-1 collected with the D0
detector at the Fermilab Tevatron Collider. We obtain mt = 174.0 +- 1.8(stat)
+- 2.4(syst) GeV, which is in agreement with the current world average mt =
173.3 +- 1.1 GeV. This is currently the most precise measurement of mt in the
dilepton channel.Comment: 7 pages, 4 figure
Search for single vector-like quarks in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for hypothetical vector-like quarks in ppbar collisions
at sqrt(s) = 1.96 TeV. The data were collected by the D0 detector at the
Fermilab Tevatron Collider and correspond to an integrated luminosity of 5.4
fb^(-1). We select events with a final state composed of a W or Z boson and a
jet consistent with a heavy object decay. We observe no significant excess in
comparison to the background prediction and set limits on production cross
sections for vector-like quarks decaying to W+jet and Z+jet. These are the most
stringent mass limits for electroweak single vector-like quark production at
hadron colliders.Comment: submitted to Phys. Rev. Let
Measurement of the top quark pair production cross section in the lepton+jets channel in proton-antiproton collisions at =1.96 TeV
We present a measurement of the inclusive top quark pair production cross
section in \ppbar collisions at (\sqrt{s}=1.96) TeV utilizing data
corresponding to an integrated luminosity of \lumi\ collected with the D0
detector at the Fermilab Tevatron Collider. We consider final states containing
one high- isolated electron or muon and at least two jets, and we
perform three analyses: one exploiting specific kinematic features of \ttbar
events, the second using -jet identification, and the third using both
techniques to separate \ttbar\ signal from background. In the third case, we
determine simultaneously the cross section and the ratio of the
production rates of +heavy flavor jets and +light flavor jets, which
reduces the impact of the systematic uncertainties related to the background
estimation. Assuming a top quark mass of 172.5 GeV, we obtain
pb. This result agrees with
predictions of the standard model.Comment: 19 pages, 6 figures, submitted to Phys. Rev.
A search for charged massive long-lived particles
We report on a search for charged massive long-lived particles (CMLLPs),
based on 5.2 fb of integrated luminosity collected with the D0 detector
at the Fermilab Tevatron collider. We search for events in which one
or more particles are reconstructed as muons but have speed and ionization
energy loss inconsistent with muons produced in beam collisions.
CMLLPs are predicted in several theories of physics beyond the standard model.
We exclude pair-produced long-lived gaugino-like charginos below 267 GeV and
higgsino-like charginos below 217 GeV at 95% C.L., as well as long-lived scalar
top quarks with mass below 285 GeV.Comment: submitted to Phys. Rev. Letter
Journal Staff
We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar < 1.0 and transverse momenta 30 < p(T)(gamma) < 200 GeV. The b-quark jets are required to have p(T)(jet) > 15 GeVand vertical bar y(jet)vertical bar < 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators
Direct measurement of the mass difference between top and antitop quarks
We present a direct measurement of the mass difference between top and
antitop quarks (dm) in lepton+jets top-antitop final states using the "matrix
element" method. The purity of the lepton+jets sample is enhanced for
top-antitop events by identifying at least one of the jet as originating from a
b quark. The analyzed data correspond to 3.6 fb-1 of proton-antiproton
collisions at 1.96 TeV acquired by D0 in Run II of the Fermilab Tevatron
Collider. The combination of the e+jets and mu+jets channels yields dm = 0.8
+/- 1.8 (stat) +/- 0.5 (syst) GeV, which is in agreement with the standard
model expectation of no mass difference.Comment: submitted to Phys. Rev.
Measurements of differential cross sections of Z/gamma*+jets+X events in proton anti-proton collisions at sqrt{s}=1.96 TeV
We present cross section measurements for Z/gamma*+jets+X production,
differential in the transverse momenta of the three leading jets. The data
sample was collected with the D0 detector at the Fermilab Tevatron proton
anti-proton collider at a center-of-mass energy of 1.96 TeV and corresponds to
an integrated luminosity of 1 fb-1. Leading and next-to-leading order
perturbative QCD predictions are compared with the measurements, and agreement
is found within the theoretical and experimental uncertainties. We also make
comparisons with the predictions of four event generators. Two
parton-shower-based generators show significant shape and normalization
differences with respect to the data. In contrast, two generators combining
tree-level matrix elements with a parton shower give a reasonable description
of the the shapes observed in data, but the predicted normalizations show
significant differences with respect to the data, reflecting large scale
uncertainties. For specific choices of scales, the normalizations for either
generator can be made to agree with the measurements.Comment: Published in PLB. 11 pages, 3 figure
Simultaneous measurement of the ratio B(t->Wb)/B(t->Wq) and the top quark pair production cross section with the D0 detector at sqrt(s)=1.96 TeV
We present the first simultaneous measurement of the ratio of branching
fractions, R=B(t->Wb)/B(t->Wq), with q being a d, s, or b quark, and the top
quark pair production cross section sigma_ttbar in the lepton plus jets channel
using 0.9 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV collected with the
D0 detector. We extract R and sigma_ttbar by analyzing samples of events with
0, 1 and >= 2 identified b jets. We measure R = 0.97 +0.09-0.08 (stat+syst) and
sigma_ttbar = 8.18 +0.90-0.84 (stat+syst)} +/-0.50 (lumi) pb, in agreement with
the standard model prediction.Comment: submitted to Phys.Rev.Letter
Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS
The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
Measurement of the semileptonic charge asymmetry in B0 meson mixing with the D0 detector
We present a measurement of the semileptonic mixing asymmetry for B0 mesons,
a^d_{sl}, using two independent decay channels: B0 -> mu+D-X, with D- ->
K+pi-pi-; and B0 -> mu+D*-X, with D*- -> antiD0 pi-, antiD0 -> K+pi- (and
charge conjugate processes). We use a data sample corresponding to 10.4 fb^{-1}
of ppbar collisions at sqrt(s) = 1.96 TeV, collected with the D0 experiment at
the Fermilab Tevatron collider. We extract the charge asymmetries in these two
channels as a function of the visible proper decay length (VPDL) of the B0
meson, correct for detector-related asymmetries using data-driven methods, and
account for dilution from charge-symmetric processes using Monte Carlo
simulation. The final measurement combines four signal VPDL regions for each
channel, yielding a^d_{sl} = [0.68 \pm 0.45 \text{(stat.)} \pm 0.14
\text{(syst.)}]%. This is the single most precise measurement of this
parameter, with uncertainties smaller than the current world average of B
factory measurements.Comment: Version includes minor textual changes following peer review by
journal, most notably the updating of Ref. [21] to reflect the most recent
publicatio
- …