11 research outputs found
Microbial Communities in Long-Term, Water-Flooded Petroleum Reservoirs with Different in situ Temperatures in the Huabei Oilfield, China
The distribution of microbial communities in the Menggulin (MGL) and Ba19 blocks in the Huabei Oilfield, China, were studied based on 16S rRNA gene analysis. The dominant microbes showed obvious block-specific characteristics, and the two blocks had substantially different bacterial and archaeal communities. In the moderate-temperature MGL block, the bacteria were mainly Epsilonproteobacteria and Alphaproteobacteria, and the archaea were methanogens belonging to Methanolinea, Methanothermobacter, Methanosaeta, and Methanocella. However, in the high-temperature Ba19 block, the predominant bacteria were Gammaproteobacteria, and the predominant archaea were Methanothermobacter and Methanosaeta. In spite of shared taxa in the blocks, differences among wells in the same block were obvious, especially for bacterial communities in the MGL block. Compared to the bacterial communities, the archaeal communities were much more conserved within blocks and were not affected by the variation in the bacterial communities
Challenges in microbial ecology: building predictive understanding of community function and dynamics.
The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model-experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved
Origin of abundant moonmilk deposits in a subsurface granitic environment
22 páginas.-- 6 figuras.-- 115 referencias.-- Additional Supporting Information may be found in the online version of this article: http://dx.doi.org/10.1111/sed.12431Subsurface granitic environments are scarce and poorly investigated. A multi‐disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north‐west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle‐fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle‐fibre calcite, with an important contribution of atmospheric CO2, soil respiration and urn:x-wiley:00370746:media:sed12431:sed12431-math-0001 from weathering of Ca‐bearing minerals. The DNA‐based analyses revealed the presence of micro‐organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro‐organisms are involved in the formation of the needle‐fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment.The authors acknowledge the Spanish Ministry of Economy, Industry and Competitiveness (MINEICO, project CGL2011-2569) and the Portuguese Foundation for Science and Technology, FCT (UID/GEO/04035/2013, UID/ECI/04028/2013, PEst-OE/CTE/UI0098/2011) and the LABCARGA| ISEP re-equipment program (IPP-ISEP|PAD’2007/ 08) for financial support. AZM thanks MINEICO for the ‘Juan de la Cierva – Incorporación’ postdoctoral contract (IJCI-2014-20443). PMMS thanks the Spanish Ministry of Science and Innovation for his contract associated with the ‘Research Programme in Technologies for the Assessment and Conservation of Cultural Heritage’ (TCP CSD2007-0005Peer reviewe