95 research outputs found
Predictions of pressure-induced transition temperature increase for a variety of high temperature superconductors
A wide variety of superconducting oxides are used to test a general model of
high pressure induced transition temperature (T c) changes. The T c 's vary
from a low of 24 K to a high of 164 K. Although the model is capable of
predicting both increases and decreases in T c with pressure, only
superconductors that exhibit an increase are considered at this time.
Predictions are made of the maximum T^ cP theo for 15 super-conductors as a
function of their compressibilities. The theoretical results generally agree
well with experiment. This model of T c as a function of pressure is derived
from a recent successful phenomenological theory of short coherence length
superconductivity.Comment: 9 pages. 1 table, 0 figure
Optical transmission spectroscopy of switchable yttrium hydride films.
The optical transmission of the recently discovered switchable yttrium hydride films is determined spectroscopically as a function of hydrogen content. This is done during electrochemical loading of Pd-capped Y film electrodes, thereby continuously changing the hydrogen concentration. The effect of the Pd cap layer on the film transmission is determined from measurements on a series of films with varying Pd layer thickness. The results are in good agreement with transmission measurements of in situ gas phase loaded, uncapped Y films. Both data sets can be consistently described with simple optical decay lengths such as 277.8 nm for YH3−δ and 15.1 nm for Pd at ħω=1.96 eV. The hydrogen concentration dependence of the optical transmission is discussed and compared with previous optical measurements on bulk samples and band-structure calculations
Interplay among critical temperature, hole content, and pressure in the cuprate superconductors
Within a BCS-type mean-field approach to the extended Hubbard model, a
nontrivial dependence of T_c on the hole content per unit CuO_2 is recovered,
in good agreement with the celebrated non-monotonic universal behaviour at
normal pressure. Evaluation of T_c at higher pressures is then made possible by
the introduction of an explicit dependence of the tight-binding band and of the
carrier concentration on pressure P. Comparison with the known experimental
data for underdoped Bi2212 allows to single out an `intrinsic' contribution to
d T_c / d P from that due to the carrier concentration, and provides a
remarkable estimate of the dependence of the inter-site coupling strength on
the lattice scale.Comment: REVTeX 8 pages, including 5 embedded PostScript figures; other
required macros included; to be published in Phys. Rev. B (vol. 54
Theory for Metal Hydrides with Switchable Optical Properties
Recently it has been discovered that lanthanum, yttrium, and other metal
hydride films show dramatic changes in the optical properties at the
metal-insulator transition. Such changes on a high energy scale suggest the
electronic structure is best described by a local model based on negatively
charged hydrogen (H) ions. We develop a many-body theory for the strong
correlation in a H ion lattice. The metal hydride is described by a large
-limit of an Anderson lattice model. We use lanthanum hydride as a prototype
of these compounds, and find LaH is an insulator with a substantial gap
consistent with experiments. It may be viewed either as a Kondo insulator or a
band insulator due to strong electron correlation. A H vacancy state in LaH
is found to be highly localized due to the strong bonding between the electron
orbitals of hydrogen and metal atoms. Unlike the impurity states in the usual
semiconductors, there is only weak internal optical transitions within the
vacancy. The metal-insulator transition takes place in a band of these vacancy
states.Comment: 18 pages, 16 figures and 6 tables. Submitted to PR
Isotope effects in switchable metal-hydride mirrors
Measurements of optical reflectance, transmittance, and electrical resistivity on the switchable mirror systems YHx and YDx show that the absorption of hydrogen induces the same variations as that of deuterium. In both cases there is a weak transparency window for the metallic dihydride (dideuteride) phase and a yellowish transparency in the insulating trihydride (trideuteride) phase. The slightly higher electrical resistivity of the deuterides is related to the lower energy of their optical phonons. The absence of significant isotope effects in the optical properties of YHx(YDx) is at variance with Peierls-like theoretical models. It is, however, compatible with strong electron correlation model
Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry
The dielectric properties of alpha-MgH2 are investigated in the photon energy
range between 1 and 6.5 eV. For this purpose, a novel sample configuration and
experimental setup are developed that allow both optical transmission and
ellipsometric measurements of a transparent thin film in equilibrium with
hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator
with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about
80% over the whole visible spectrum. The dielectric function found in this work
confirms very recent band structure calculations using the GW approximation by
Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a
cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
Strong Pinning in High Temperature Superconductors
Detailed measurements of the critical current density jc of YBa2Cu3O7 films
grown by pulsed laser deposition reveal the increase of jc as function of the
filmthickness. Both this thickness dependence and the field dependence of the
critical current are consistently described using a generalization of the
theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024
(1991)]. From the model, we deduce values of the defect density (10^21 m^-3)
and the elementary pinning force, which are in good agreement with the
generally accepted values for Y2O3-inclusions. In the absence of clear evidence
that the critical current is determined by linear defects or modulations of the
film thickness, our model provides an alternative explanation for the rather
universal field dependence of the critical current density found in YBa2Cu3O7
films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002
- …