252 research outputs found

    Fairness in Algorithmic Decision Making: An Excursion Through the Lens of Causality

    Full text link
    As virtually all aspects of our lives are increasingly impacted by algorithmic decision making systems, it is incumbent upon us as a society to ensure such systems do not become instruments of unfair discrimination on the basis of gender, race, ethnicity, religion, etc. We consider the problem of determining whether the decisions made by such systems are discriminatory, through the lens of causal models. We introduce two definitions of group fairness grounded in causality: fair on average causal effect (FACE), and fair on average causal effect on the treated (FACT). We use the Rubin-Neyman potential outcomes framework for the analysis of cause-effect relationships to robustly estimate FACE and FACT. We demonstrate the effectiveness of our proposed approach on synthetic data. Our analyses of two real-world data sets, the Adult income data set from the UCI repository (with gender as the protected attribute), and the NYC Stop and Frisk data set (with race as the protected attribute), show that the evidence of discrimination obtained by FACE and FACT, or lack thereof, is often in agreement with the findings from other studies. We further show that FACT, being somewhat more nuanced compared to FACE, can yield findings of discrimination that differ from those obtained using FACE.Comment: 7 pages, 2 figures, 2 tables.To appear in Proceedings of the International Conference on World Wide Web (WWW), 201

    A unified approach to quantifying algorithmic unfairness: Measuring individual & group unfairness via inequality indices

    Get PDF
    Discrimination via algorithmic decision making has received considerable attention. Prior work largely focuses on defining conditions for fairness, but does not define satisfactory measures of algorithmic unfairness. In this paper, we focus on the following question: Given two unfair algorithms, how should we determine which of the two is more unfair? Our core idea is to use existing inequality indices from economics to measure how unequally the outcomes of an algorithm benefit different individuals or groups in a population. Our work offers a justified and general framework to compare and contrast the (un)fairness of algorithmic predictors. This unifying approach enables us to quantify unfairness both at the individual and the group level. Further, our work reveals overlooked tradeoffs between different fairness notions: using our proposed measures, the overall individual-level unfairness of an algorithm can be decomposed into a between-group and a within-group component. Earlier methods are typically designed to tackle only between-group unfairness, which may be justified for legal or other reasons. However, we demonstrate that minimizing exclusively the between-group component may, in fact, increase the within-group, and hence the overall unfairness. We characterize and illustrate the tradeoffs between our measures of (un)fairness and the prediction accuracy

    European Respiratory Society International Congress 2017:highlights from the Clinical Assembly

    Get PDF
    This article contains highlights and a selection of the scientific advances from the European Respiratory Society's Clinical Assembly (Assembly 1 and its six respective groups) that were presented at the 2017 European Respiratory Society International Congress in Milan, Italy. The most relevant topics from each of the groups will be discussed, covering a wide range of areas including clinical problems, rehabilitation and chronic care, thoracic imaging, interventional pulmonology, diffuse and parenchymal lung diseases, and general practice and primary care. In this comprehensive review, the newest research and actual data as well as award-winning abstracts and highlight sessions will be discusse

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Utility of Urine Cultures During Febrile Neutropenia Workup in Hematopoietic Stem Cell Transplantation Recipients Without Urinary Symptoms

    Get PDF
    The utility of obtaining screening urine cultures for febrile neutropenia (FN) during hematopoietic stem cell transplant (HCT) is unknown. In 667 adult HCT patients with FN, only 40 (6%) were found with bacteriuria. Antibiotics were modified in 3 patients (0.4%) based on urine cultures and none developed urinary-associated infectious complications

    An Open Source Framework for Standardized Comparisons of Face Recognition Algorithms

    Get PDF
    In this paper we introduce the facereclib, the first software library that allows to compare a variety of face recognition algorithms on most of the known facial image databases and that permits rapid prototyping of novel ideas and testing of meta-parameters of face recognition algorithms. The facereclib is built on the open source signal processing and machine learning library Bob. It uses well-specified face recognition protocols to ensure that results are comparable and reproducible. We show that the face recognition algorithms implemented in Bob as well as third party face recognition libraries can be used to run face recognition experiments within the framework of the facereclib. As a proof of concept, we execute four different state-of-the-art face recognition algorithms: local Gabor binary pattern histogram sequences (LGBPHS), Gabor graph comparisons with a Gabor phase based similarity measure, inter-session variability modeling (ISV) of DCT block features, and the linear discriminant analysis on two different color channels (LDA-IR) on two different databases: The Good, The Bad, & The Ugly, and the BANCA database, in all cases using their fixed protocols. The results show that there is not one face recognition algorithm that outperforms all others, but rather that the results are strongly dependent on the employed database

    International society of sports nutrition position stand: caffeine and exercise performance

    Get PDF
    Following critical evaluation of the available literature to date, The International Society of Sports Nutrition (ISSN) position regarding caffeine intake is as follows: 1. Supplementation with caffeine has been shown to acutely enhance various aspects of exercise performance in many but not all studies. Small to moderate benefits of caffeine use include, but are not limited to: muscular endurance, movement velocity and muscular strength, sprinting, jumping, and throwing performance, as well as a wide range of aerobic and anaerobic sport-specific actions. 2. Aerobic endurance appears to be the form of exercise with the most consistent moderate-to-large benefits from caffeine use, although the magnitude of its effects differs between individuals. 3. Caffeine has consistently been shown to improve exercise performance when consumed in doses of 3–6 mg/ kg body mass. Minimal effective doses of caffeine currently remain unclear but they may be as low as 2 mg/kg body mass. Very high doses of caffeine (e.g. 9 mg/kg) are associated with a high incidence of side-effects and do not seem to be required to elicit an ergogenic effect. 4. The most commonly used timing of caffeine supplementation is 60 min pre-exercise. Optimal timing of caffeine ingestion likely depends on the source of caffeine. For example, as compared to caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption to the start of the exercise session. 5. Caffeine appears to improve physical performance in both trained and untrained individuals. 6. Inter-individual differences in sport and exercise performance as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion may be attributed to genetic variation associated with caffeine metabolism, and physical and psychological response. Other factors such as habitual caffeine intake also may play a role in between-individual response variation. 7. Caffeine has been shown to be ergogenic for cognitive function, including attention and vigilance, in most individuals. 8. Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation. 9. The use of caffeine in conjunction with endurance exercise in the heat and at altitude is well supported when dosages range from 3 to 6 mg/kg and 4–6 mg/kg, respectively. 10. Alternative sources of caffeine such as caffeinated chewing gum, mouth rinses, energy gels and chews have been shown to improve performance, primarily in aerobic exercise. 11. Energy drinks and pre-workout supplements containing caffeine have been demonstrated to enhance both anaerobic and aerobic performance
    corecore