480 research outputs found

    Expanding the etiologic spectrum of spastic ataxia syndrome: chronic infection with human T lymphotropic virus type 1

    Get PDF
    Infection with human T cell lymphotropic virus type 1 (HTLV-1) is in most cases indolent; however, some patients develop adult T cell leukemia, associated with poor prognosis, or the highly disabling and incurable HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) (Verdonck et al. 2007; Cooper et al. 2009). HTLV-1 is an endemic infection in Southern Japan, Iran, South America, the Caribbean basin, West Africa, and among aborigines in Australia (Verdonck et al. 2007). There are no established biomarkers to predict complications in HTLV-1; however, the percentage of peripheral blood mononuclear cells (PBMCs) harboring the provirus, called proviral load (PVL), and beta-2 microglobulin (β2M) in serum are surrogate biomarkers. Associations with neurological syndromes other than HAM/TSP have been claimed, including neuropathy, motor neuron disease (Araujo et al. 2019), as well as cerebellar ataxia (Iwasaki 4,5,6,; Kira et al. 1993; Gracia et al. 1995; e-1 to e-6). In the majority of reported cases, ataxia occurred in Japanese patients with HAM/TSP (Iwasaki 1990; Iwanaga 1993; Kira et al. 1993; e1, e-2, e-4, e-6). Here, we present an Iranian HTLV-1 positive patient with a cerebellar syndrome, elevated β2M in serum, and elevated neopterin and CXCL10 in cerebrospinal fluid (CSF)

    Numerical Study of Aging in the Generalized Random Energy Model

    Full text link
    Magnetizations are introduced to the Generalized Random Energy Model (GREM) and numerical simulations on ac susceptibility is made for direct comparison with experiments in glassy materials. Prominent dynamical natures of spin glasses, {\it i.e.}, {\em memory} effect and {\em reinitialization}, are reproduced well in the GREM. The existence of many layers causing continuous transitions is very important for the two natures. Results of experiments in other glassy materials such as polymers, supercooled glycerol and orientational glasses, which are contrast to those in spin glasses, are interpreted well by the Single-layer Random Energy Model.Comment: 8 pages, 9 figures, to be submitted to J. Phys. Soc. Jp

    Memory and chaos in an Ising spin glass

    Full text link
    The non-equilibrium dynamics of the model 3d-Ising spin glass - Fe0.55_{0.55}Mn0.45_{0.45}TiO3_3 - has been investigated from the temperature and time dependence of the zero field cooled magnetization recorded under certain thermal protocols. The results manifest chaos, rejuvenation and memory features of the equilibrating spin configuration that are very similar to those observed in corresponding studies of the archetypal RKKY spin glass Ag(Mn). The sample is rapidly cooled in zero magnetic field, and the magnetization recorded on re-heating. When a stop at constant temperature TsT_s is made during the cooling, the system evolves toward its equilibrium state at this temperature. The equilibrated state established during the stop becomes frozen in on further cooling and is retrieved on re-heating. The memory of the aging at TsT_s is not affected by a second stop at a lower temperature TsT'_s. Reciprocally, the first equilibration at TsT_s has no influence on the relaxation at TsT'_s, as expected within the droplet model for domain growth in a chaotic landscape.Comment: REVTeX style; 4 pages, 4 figure

    Relaxation of the field-cooled magnetization of an Ising spin glass

    Full text link
    The time and temperature dependence of the field-cooled magnetization of a three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been investigated. The temperature and cooling rate dependence is found to exhibit memory phenomena that can be related to the memory behavior of the low frequency ac-susceptibility. The results add some further understanding on how to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure

    Strong rejuvenation in a chiral-glass superconductor

    Full text link
    The glassy paramagnetic Meissner phase of a Bi2_2Sr2_2CaCu2_2Ox_x superconductor (xx = 8.18) is investigated by squid magnetometry, using ``dc-memory'' experiments employed earlier to study spin glasses. The temperature dependence of the zero-field-cooled and thermo-remanent magnetization is recorded on re-heating after specific cooling protocols, in which single or multiple halts are performed at constant temperatures. The 'spin' states equilibrated during the halts are retrieved on re-heating. The observed memory and rejuvenation effects are similar to those observed in Heisenberg-like spin glasses.Comment: REVTeX 4 style; 5 pages, 5 figure

    Phenomenological glass model for vibratory granular compaction

    Full text link
    A model for weakly excited granular media is derived by combining the free volume argument of Nowak et al. [Phys. Rev. E 57, 1971 (1998)] and the phenomenological model for supercooled liquids of Adam and Gibbs [J. Chem. Phys. 43, 139 (1965)]. This is made possible by relating the granular excitation parameter \Gamma, defined as the peak acceleration of the driving pulse scaled by gravity, to a temperature-like parameter \eta(\Gamma). The resulting master equation is formally identical to that of Bouchaud's trap model for glasses [J. Phys. I 2, 1705 (1992)]. Analytic and simulation results are shown to compare favourably with a range of known experimental behaviour. This includes the logarithmic densification and power spectrum of fluctuations under constant \eta, the annealing curve when \eta is varied cyclically in time, and memory effects observed for a discontinuous shift in \eta. Finally, we discuss the physical interpretation of the model parameters and suggest further experiments for this class of systems.Comment: 2 references added; some figure labels tweaked. To appear in PR

    Cerebrospinal Fluid Metals and the Association with Cerebral Small Vessel Disease

    Get PDF
    BACKGROUND: Brain metal homeostasis is essential for brain health, and deregulation can result in oxidative stress on the brain parenchyma. OBJECTIVE: Our objective in this study was to focus on two hemorrhagic MRI manifestations of small vessel disease [cerebral microbleeds (CMBs) and cortical superficial siderosis (cSS)] and associations with cerebrospinal fluid (CSF) iron levels. In addition, we aimed to analyze CSF biomarkers for dementia and associations with CSF metal levels. METHODS: This is a cross-sectional study of 196 patients who underwent memory clinic investigation, including brain MRI. CSF was collected and analyzed for metals, amyloid-β (Aβ) 42, total tau (T-tau), and phosphorylated tau (P-tau), and CSF/serum albumin ratios. Statistical analyses were performed using generalized linear models. RESULTS: No significant difference was found between CSF metal levels across diagnostic groups. Higher iron and copper levels were associated with higher CSF levels of Aβ42, T-tau, P-tau, and CSF/serum albumin ratios (p < 0.05). Zinc was associated with higher CSF/serum albumin ratios. There was no significant association between CMBs or cSS and CSF iron levels. An increase in CSF iron with the number of CMBs was seen in APOEɛ4 carriers. CONCLUSION: CSF iron levels are elevated with cerebral microbleeds in APOEɛ4 carriers, with no other association seen with hemorrhagic markers of small vessel disease. The association of elevated CSF iron and copper with tau could represent findings of increased neurodegeneration in these patients

    Corrections to Scaling for the Two-dimensional Dynamic XY Model

    Full text link
    With large-scale Monte Carlo simulations, we confirm that for the two-dimensional XY model, there is a logarithmic correction to scaling in the dynamic relaxation starting from a completely disordered state, while only an inverse power law correction in the case of starting from an ordered state. The dynamic exponent zz is z=2.04(1)z=2.04(1).Comment: to appear as a Rapid commu. in Phys. Rev.

    Monte Carlo Simulations of Short-time Critical Dynamics with a Conserved Quantity

    Full text link
    With Monte Carlo simulations, we investigate short-time critical dynamics of the three-dimensional anti-ferromagnetic Ising model with a globally conserved magnetization msm_s (not the order parameter). From the power law behavior of the staggered magnetization (the order parameter), its second moment and the auto-correlation, we determine all static and dynamic critical exponents as well as the critical temperature. The universality class of ms=0m_s=0 is the same as that without a conserved quantity, but the universality class of non-zero msm_s is different.Comment: to appear in Phys. Rev.
    corecore