128 research outputs found
Probing hole-induced ferromagnetic exchange in magnetic semiconductors by inelastic neutron scattering
The effect of hole doping on the exchange coupling of the nearest neighbor
(NN) Mn pairs in ZnMnTe is probed by inelastic neutron scattering.
The difference in the NN exchange energy in the presence and in
the absence of the holes is determined. The obtained value of is
in good agreement with the predictions of the Zener/RKKY model, even on the
insulator side of the metal-insulator transition.Comment: 4 pages, 2 figures, submitted to PR
Interlayer Exchange Coupling in (Ga,Mn)As-based Superlattices
The interlayer coupling between (Ga,Mn)As ferromagnetic layers in
all-semiconductor superlattices is studied theoretically within a tight-binding
model, which takes into account the crystal, band and magnetic structure of the
constituent superlattice components. It is shown that the mechanism originally
introduced to describe the spin correlations in antiferromagnetic EuTe/PbTe
superlattices, explains the experimental results observed in ferromagnetic
semiconductor structures, i.e., both the antiferromagnetic coupling between
ferromagnetic layers in IV-VI (EuS/PbS and EuS/YbSe) superlattices as well as
the ferromagnetic interlayer coupling in III-V ((Ga,Mn)As/GaAs) multilayer
structures. The model allows also to predict (Ga,Mn)As-based structures, in
which an antiferromagnetic interlayer coupling could be expected.Comment: 4 pages, 3 figure
Magnetization steps in Zn_(1-x)Mn_xO: Four largest exchange constants and single-ion anisotropy
Magnetization steps (MST's) from Mn pairs in several single crystals of
Zn_(1-x)Mn_xO (0.0056<=x<=0.030, and in one powder (x=0.029), were observed.
The largest two exchange constants, J1/kB=-18.2+/-0.5K and J1'/kB=-24.3+/-0.6K,
were obtained from large peaks in the differential susceptibility, dM/dH,
measured in pulsed magnetic fields, H, up to 500 kOe. These two largest J's are
associated with the two inequivalent classes of nearest neighbors (NN's) in the
wurtzite structure. The 29% difference between J1 and J1' is substantially
larger than 13% in CdS:Mn, and 15% in CdSe:Mn. The pulsed-field data also
indicate that, despite the direct contact between the samples and a
superfluid-helium bath, substantial departures from thermal equilibrium
occurred during the 7.4 ms pulse. The third- and fourth-largest J's were
determined from the magnetization M at 20 mK, measured in dc magnetic fields H
up to 90 kOe. Both field orientations H||c and H||[10-10] were studied. (The
[10-10] direction is perpendicular to the c-axis, [0001].) By definition,
neighbors which are not NN's are distant neighbors (DN's). The largest DN
exchange constant (third-largest overall), has the value J/kB=-0.543+/-0.005K,
and is associated with the DN at r=c. Because this is not the closest DN, this
result implies that the J's do not decrease monotonically with the distance r.
The second-largest DN exchange constant (fourth-largest overall), has the value
J/kB=-0.080 K. It is associated with one of the two classes of neighbors that
have a coordination number z=12, but the evidence is insufficient for a
definite unique choice. The dependence of M on the direction of H gives
D/kB=-0.039+/-0.008K, in fair agreement with -0.031 K from earlier EPR work.Comment: 12 pages, 10 figures. Submitted to PR
Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study
We study the temperature-dilution phase diagram of a site-diluted Heisenberg
antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya
anisotropic term, fixed to realistic microscopic parameters for (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy
induces a finite-temperature phase transition to a spin glass phase, at
dilutions larger than 80%. The resulting probability distribution of the order
parameter P(q) is similar to the one found in the cubic lattice
Edwards-Anderson Ising model. The critical exponents undergo large finite size
corrections, but tend to values similar to the ones of the
Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure
Magnetic susceptibility of EuTe/PbTe Heisenberg superlattices: experimental and theoretical studies
We report results on the temperature dependence of the susceptibilities of a
set of MBE-grown short-period EuTe/PbTe antiferromagnetic superlattices having
different EuTe layer thicknesses. In-plane and orthogonal susceptibilities have
been measured and display a strong anisotropy at low temperature, confirming
the occurrence of a magnetic phase transition in the thicker samples, as seen
also in neutron diffraction studies. We suggest that dipolar interactions
stabilize antiferromagnetic long-range order in an otherwise isotropic system
and we present numerical and analytical results for the low-temperature
orthogonal susceptibility.Comment: 30 pages, 8 ps figures, RevTe
Polarized neutron reflectivity studies of magnetic semiconductor superlattices
Abstract Polarized neutron reflectivity studies of EuS/PbS, EuS/YbSe and GaMnAs/GaAs superlattices performed at the NIST Center for Neutron Research are presented. Pronounced antiferromagnetic (AFM) interlayer coupling has been found in EuS/PbS superlattices for a very broad range of PbS spacer thicknesses. Similar, but weaker, AFM coupling is also present in EuS/YbSe, although only for relatively thin YbSe layers. Neutron polarization analysis shows distinct in-plane asymmetry of the magnetization directions of EuS layers in both systems under investigation. For GaMnAs/GaAs superlattices, ferromagnetic (FM) interlayer correlations have been observed. Polarized neutron reflectometry investigations of several GaMnAs/GaAs superlattices have revealed that the manganese magnetic moments in individual GaMnAs layers, in spite of low Mn concentration, form a truly long range, that is in certain cases a single domain, ferromagnetic state.
Spin Glass and Antiferromagnetic Behaviour in a Diluted fcc Antiferromagnet
We report on a Monte Carlo study of a diluted Ising antiferromagnet on a fcc
lattice. This is a typical model example of a highly frustrated
antiferromagnet, and we ask, whether sufficient random dilution of spins does
produce a spin glass phase. Our data strongly indicate the existence of a spin
glass transition for spin--concentration : We find a divergent spin
glass susceptibility and a divergent spin glass correlation length, whereas the
antiferromagnetic correlation length saturates in this regime. Furthermore, we
find a first order phase transition to an antiferromagnet for ,
which becomes continuous in the range . Finite size scaling is
employed to obtain critical exponents. We compare our results with experimental
systems as diluted frustrated antiferromagnets as .Comment: 29 pages (revtex) and 10 figures uuencoded and Z-compresse
Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices
The magnetic properties of antiferromagnetic (AFM) EuTe epitaxial layers and
short period EuTe/PbTe superlattices (SLs), grown by molecular beam epitaxy on
(111) BaF substrates, were studied by magnetization and neutron diffraction
measurements. Considerable changes of the N\'eel temperature as a function of
the EuTe layer thickness as well as of the strain state were found. A mean
field model, taking into account the variation of the exchange constants with
the strain-induced lattice distortions, and the nearest neighbor environment of
a Eu atoms, was developed to explain the observed changes in wide
range of samples. Pronounced interlayer magnetic correlations have been
revealed by neutron diffraction in EuTe/PbTe SLs with PbTe spacer thickness up
to 60 \AA. The observed diffraction spectra were analyzed, in a kinematical
approximation, assuming partial interlayer correlations characterized by an
appropriate correlation parameter. The formation of interlayer correlations
between the AFM EuTe layers across the nonmagnetic PbTe spacer was explained
within a framework of a tight-binding model. In this model, the interlayer
coupling stems from the dependence of the total electronic energy of the
EuTe/PbTe SL on the spin configurations in adjacent EuTe layers. The influence
of the EuTe and PbTe layer thickness fluctuations, inherent in the epitaxial
growth process, on magnetic properties and interlayer coupling is discussed.Comment: 17 pages, 19 figures, accepted to PR
- …
