6,993 research outputs found

    Fast image decompression for telebrowsing of images

    Get PDF
    Progressive image transmission (PIT) is often used to reduce the transmission time of an image telebrowsing system. A side effect of the PIT is the increase of computational complexity at the viewer's site. This effect is more serious in transform domain techniques than in other techniques. Recent attempts to reduce the side effect are futile as they create another side effect, namely, the discontinuous and unpleasant image build-up. Based on a practical assumption that image blocks to be inverse transformed are generally sparse, this paper presents a method to minimize both side effects simultaneously

    Majorana spin liquids and projective realization of SU(2) spin symmetry

    Full text link
    We revisit the fermionic parton approach to S = 1/2 quantum spin liquids with SU(2) spin rotation symmetry, and the associated projective symmetry group (PSG) classification. We point out that the existing PSG classification is incomplete; upon completing it, we find spin liquid states with S=1 and S=0 Majorana fermion excitations coupled to a deconfined Z2 gauge field. The crucial observation leading us to this result is that, like space group and time reversal symmetries, spin rotations can act projectively on the fermionic partons; that is, a spin rotation may be realized by simultaneous SU(2) spin and gauge rotations. We show that there are only two realizations of spin rotations acting on fermionic partons: the familiar naive realization where spin rotation is not accompanied by any gauge transformation, and a single type of projective realization. We discuss the PSG classification for states with projective spin rotations. To illustrate these results, we show that there are four such PSGs on the two-dimensional square lattice. We study the properties of the corresponding states, finding that one -- with gapless Fermi points -- is a stable phase beyond mean-field theory. In this phase, depending on parameters, a small Zeeman magnetic field can open a partial gap for the Majorana fermion excitations. Moreover, there are nearby gapped phases supporting Z2 vortex excitations obeying non-Abelian statistics. We conclude with a discussion of various open issues, including the challenging question of where such S=1 Majorana spin liquids may occur in models and in real systems.Comment: 19 pages, 8 figures. Typos corrected, references adde

    Magnetization plateau and incommensurate spin modulation in Ca3Co2O6

    Full text link
    The magnetic properties of a trigonal prism unit of the spin-2 frustrated compound Ca3Co2O6 are studied by means of the density-matrix renormalization group method. A magnetization plateau at ms/3ms/3 (msms is the saturation magnetization) with ferrimagnetic structure is observed. By fitting the experimental data of magnetic curve, an estimation of the couplings gives J1=-26.84K, J_{2}=0.39K, and J_{3}=0.52K. The local magnetic moments are unveiled to exhibit an incommensurate sinusoidally modulation along the three chains of the trigonal prism, which gives a strong theoretical support to the experimentally observed incommensurate partially disordered antiferromagnetic state for Ca3Co2O6. The present result suggests that the modulation indeed originates from the competition of antiferromagnetic and ferromagnetic couplings.Comment: 4 pages, 4 figures, accepted by Appl. Phys. Lett

    Symmetry, dark matter and LHC phenomenology of the minimal ν\nuSM

    Full text link
    A sterile neutrino with a mass of a few keV can play the role of a warm dark matter(DM). This can be realized in seesaw models with 3 left- and 3 right-handed neutrinos. It is possible to identify the keV neutrino to be one of the right-handed neutrinos leaving the other two to be much more heavier, the ν\nuSM model. We show that with this realization of keV neutrino DM, the model has an approximate Friedberg-Lee symmetry providing a natural explanation for the lightness of the right-handed neutrino. We also find that in this model the mixing parameters couple light and heavy neutrinos are strongly correlated, and can be large enough to have testable effects at the LHC for the two heavy right-handed neutrinos to be in the hundred-GeV range.Comment: 20 pages, 5 figures, discussions expanded, references added, to appear in PR
    corecore