714 research outputs found
Resonances for coupled Bose-Einstein Condensates
We study some effects arising from periodic modulation of the asymmetry and
the barrier height of a two-well potential containing a Bose-Einstein
condensate. At certain modulation frequencies the system exhibits resonances,
which may lead to enhancement of the tunneling rate between the wells and which
can be used to control the particle distribution among the wells. Some of the
effects predicted for a two-well system can be carried over to the case of a
Bose-Einstein condensate in an optical lattice
Atom-dimer scattering and long-lived trimers in fermionic mixtures
We consider a heteronuclear fermionic mixture on the molecular side of an
interspecies Feshbach resonance and discuss atom-dimer scattering properties in
uniform space and in the presence of an external confining potential,
restricting the system to a quasi-2D geometry. We find that there is a peculiar
atom-dimer p-wave resonance which can be tuned by changing the frequency of the
confinement. Our results have implications for the ongoing experiments on
Lithium-Potassium mixtures, where this mechanism allows for switching the
p-wave interaction between a K atom and Li-K dimer from attractive to
repulsive, and forming a weakly bound trimer with unit angular momentum. We
show that such trimers are long-lived and the atom-dimer resonance does not
enhance inelastic relaxation in the mixture, making it an outstanding candidate
for studies of p-wave resonance effects in a many-body system.Comment: 4 pages, 2 figures, published versio
Double-Layer Bose-Einstein Condensates with Large Number of Vortices
In this paper we systematically study the double layer vortex lattice model,
which is proposed to illustrate the interplay between the physics of a fast
rotating Bose-Einstein condensate and the macroscopic quantum tunnelling. The
phase diagram of the system is obtained. We find that under certain conditions
the system will exhibit one novel phase transition, which is consequence of
competition between inter-layer coherent hopping and inter-layer
density-density interaction. In one phase the vortices in one layer coincide
with those in the other layer. And in another phase two sets of vortex lattices
are staggered, and as a result the quantum tunnelling between two layers is
suppressed. To obtain the phase diagram we use two kinds of mean field theories
which are quantum Hall mean field and Thomas-Fermi mean field. Two different
criteria for the transition taking place are obtained respectively, which
reveals some fundamental differences between these two mean field states. The
sliding mode excitation is also discussed.Comment: 12 pages, 8 figure
Feshbach resonances in 3He*-4He* mixtures
We discuss the stability of homonuclear and heteronuclear mixtures of 3He and
4He atoms in the metastable 2^3S_1 state (He*) and predict positions and widths
of Feshbach resonances by using the Asymptotic Bound-state Model (ABM). All
calculations are performed without fit parameters, using \emph{ab-initio}
calculations of molecular potentials. One promising very broad Feshbach
resonance (\Delta B=72.9^{+18.3}_{-19.3} mT) is found that allows for tuning of
the inter-isotope scattering length.Comment: 12 pages, 7 figure
Efficient fiber-optical interface for nanophotonic devices
We demonstrate a method for efficient coupling of guided light from a single
mode optical fiber to nanophotonic devices. Our approach makes use of
single-sided conical tapered optical fibers that are evanescently coupled over
the last ~10 um to a nanophotonic waveguide. By means of adiabatic mode
transfer using a properly chosen taper, single-mode fiber-waveguide coupling
efficiencies as high as 97(1)% are achieved. Efficient coupling is obtained for
a wide range of device geometries which are either singly-clamped on a chip or
attached to the fiber, demonstrating a promising approach for integrated
nanophotonic circuits, quantum optical and nanoscale sensing applications.Comment: 7 pages, 4 figures, includes supplementary informatio
Asymptotic Bound-state Model for Feshbach Resonances
We present an Asymptotic Bound-state Model which can be used to accurately
describe all Feshbach resonance positions and widths in a two-body system. With
this model we determine the coupled bound states of a particular two-body
system. The model is based on analytic properties of the two-body Hamiltonian,
and on asymptotic properties of uncoupled bound states in the interaction
potentials. In its most simple version, the only necessary parameters are the
least bound state energies and actual potentials are not used. The complexity
of the model can be stepwise increased by introducing threshold effects,
multiple vibrational levels and additional potential parameters. The model is
extensively tested on the 6Li-40K system and additional calculations on the
40K-87Rb system are presented.Comment: 13 pages, 8 figure
Broad Feshbach resonance in the 6Li-40K mixture
We study the widths of interspecies Feshbach resonances in a mixture of the
fermionic quantum gases 6Li and 40K. We develop a model to calculate the width
and position of all available Feshbach resonances for a system. Using the model
we select the optimal resonance to study the 6Li/40K mixture. Experimentally,
we obtain the asymmetric Fano lineshape of the interspecies elastic cross
section by measuring the distillation rate of 6Li atoms from a potassium-rich
6Li/40K mixture as a function of magnetic field. This provides us with the
first experimental determination of the width of a resonance in this mixture,
Delta B=1.5(5) G. Our results offer good perspectives for the observation of
universal crossover physics using this mass-imbalanced fermionic mixture.Comment: 4 pages, 2 figure
- …