6 research outputs found

    Change-Enabled Software Systems ⋆

    No full text
    Abstract. Few real software systems are built completely from scratch nowadays. Instead, systems are built iteratively and incrementally, while integrating and interacting with components from many other systems. Adaptation, reconfiguration and evolution are normal, ongoing processes throughout the lifecycle of a software system. Nevertheless the platforms, tools and environments we use to develop software are still largely based on an outmoded model that presupposes that software systems are closed and will not significantly evolve after deployment. We claim that in order to enable effective and graceful evolution of modern software systems, we must make these systems more amenable to change by (i) providing explicit, first-class models of software artifacts, change, and history at the level of the platform, (ii) continuously analysing static and dynamic evolution to track emergent properties, and (iii) closing the gap between the domain model and the developers ’ view of the evolving system. We outline our vision of dynamic, evolving software systems and identify the research challenges to realizing this vision.

    Objectoriented reengineering patterns — an overview

    No full text
    Abstract. Successful software systems must be prepared to evolve or they will die. Although object-oriented software systems are built to last, over time they degrade as much as any legacy software system. As a consequence, one must invest in reengineering efforts to keep further development costs down. Even though software systems and their business contexts may differ in countless ways, the techniques one uses to understand, analyze and transform these systems tend to be very similar. As a consequence, one may identify various reengineering patterns that capture best practice in reverse- and re-engineering object-oriented legacy systems. We present a brief outline of a large collection of these patterns that have been mined over several years of experience with object-oriented legacy systems, and we indicate how some of these patterns can be supported by appropriate tools.

    Using Smalltalk as a reflective executable meta-language

    No full text
    Object-oriented meta-languages such as MOF or EMOF are often used to specify domain specific languages. However, these meta-languages lack the ability to describe behavior or operational semantics. Several approaches used a subset of Java mixed with OCL as executable meta-languages. In this paper, we report our experience of using Smalltalk as an executable and integrated meta-language. We validated this approach in incrementally building over the last decade, Moose, a meta-described reengineering environment. The reflective capabilities of Smalltalk support a uniform way of letting the base developer focus on his tasks while at the same time allowing him to meta-describe his domain model. The advantage of our this approach is that the developer uses the same tools and environmen
    corecore