4,029 research outputs found

    Applications of hidden symmetries to black hole physics

    Full text link
    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set (`tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.Comment: This is an extended version of the talks at NEB-14 conference (June,Ioannina,Greece) and JGRG20 meeting (September, Kyoto, Japan

    Energy flux through the horizon in the black hole-domain wall systems

    Full text link
    We study various configurations in which a domain wall (or cosmic string), described by the Nambu-Goto action, is embedded in a background space-time of a black hole in (3+1)(3+1) and higher dimensional models. We calculate energy fluxes through the black hole horizon. In the simplest case, when a static domain wall enters the horizon of a static black hole perperdicularly, the energy flux is zero. In more complicated situations, where parameters which describe the domain wall surface are time and position dependent, the flux is non-vanishing is principle. These results are of importance in various conventional cosmological models which accommodate the existence of domain walls and strings and also in brane world scenarios.Comment: references added, accepted for publication in JHE

    Capillary instability in nanowire geometries

    Full text link
    The vapor-liquid-solid (VLS) mechanism has been applied extensively as a framework for growing single-crystal semiconductor nanowires for applications spanning optoelectronic, sensor and energy-related technologies. Recent experiments have demonstrated that subtle changes in VLS growth conditions produce a diversity of nanowire morphologies, and result in intricate kinked structures that may yield novel properties. These observations have motivated modeling studies that have linked kinking phenomena to processes at the triple line between vapor, liquid and solid phases that cause spontaneous "tilting" of the growth direction. Here we present atomistic simulations and theoretical analyses that reveal a tilting instability that is intrinsic to nanowire geometries, even in the absence of pronounced anisotropies in solid-liquid interface properties. The analysis produces a very simple conclusion: the transition between axisymmetric and tilted triple lines is shown to occur when the triple line geometry satisfies Young's force-balance condition. The intrinsic nature of the instability may have broad implications for the design of experimental strategies for controlled growth of crystalline nanowires with complex geometries.Comment: 10 pages, 5 figure

    Black hole entropy without brick walls

    Get PDF
    The properties of the thermal radiation are discussed by using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity. There is no burst at the last stage of the emission of a Schwarzshild black hole. When the new equation of state density is utilized to investigate the entropy of a scalar field outside the horizon of a static black hole, the divergence appearing in the brick wall model is removed, without any cutoff. The entropy proportional to the horizon area is derived from the contribution of the vicinity of the horizon.Comment: 7 page

    Interaction of a brane with a moving bulk black hole

    Full text link
    We study the interaction of an n-dimensional topological defect (n-brane) described by the Nambu-Goto action with a higher-dimensional Schwarzschild black hole moving in the bulk spacetime. We derive the general form of the perturbation equations for an n-brane in the weak field approximation and solve them analytically in the most interesting cases. We specially analyze applications to brane world models. We calculate the induced geometry on the brane generated by a moving black hole. From the point of view of a brane observer, this geometry can be obtained by solving (n+1)-dimensional Einstein's equations with a non-vanishing right hand side. We calculate the effective stress-energy tensor corresponding to this `shadow-matter'. We explicitly show that there exist regions on the brane where a brane observer sees an apparent violation of energy conditions. We also study the deflection of light propagating in the region of influence of this `shadow matter'.Comment: version accepted for publication in Phys. Rev.

    Is It Really Naked? On Cosmic Censorship in String Theory

    Full text link
    We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the `no black hole' argument breaks.Comment: 8 pages, 5 figures, 1 table; REVTeX 4.

    Stationary strings and branes in the higher-dimensional Kerr-NUT-(A)dS spacetimes

    Full text link
    We demonstrate complete integrability of the Nambu-Goto equations for a stationary string in the general Kerr-NUT-(A)dS spacetime describing the higher-dimensional rotating black hole. The stationary string in D dimensions is generated by a 1-parameter family of Killing trajectories and the problem of finding a string configuration reduces to a problem of finding a geodesic line in an effective (D-1)-dimensional space. Resulting integrability of this geodesic problem is connected with the existence of hidden symmetries which are inherited from the black hole background. In a spacetime with p mutually commuting Killing vectors it is possible to introduce a concept of a ξ\xi-brane, that is a p-brane with the worldvolume generated by these fields and a 1-dimensional curve. We discuss integrability of such ξ\xi-branes in the Kerr-NUT-(A)dS spacetime.Comment: 8 pages, no figure
    corecore