979 research outputs found

    On Dimensional Degression in AdS(d)

    Full text link
    We analyze the pattern of fields in d+1 dimensional anti-de Sitter space in terms of those in d dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group-theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS(d+d^\prime) and massless spin one-half, spin one, and spin two fields in AdS(d+1). The mass spectra of the resulting towers of fields in AdS(d) are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev in [1] by a different method.Comment: 30 page

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production

    A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol

    Get PDF
    1. Introduction pg. 1 2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9 3. Current GHG Emission Values for Each Emissions Source Category pg. 88 4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15

    A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol

    Get PDF
    1. Introduction pg. 1 2. Review of the Scientific Papers, Technical Reports, Data Sets, and Other Information that have Become Available Since 2010 and Relate to Current Emissions Levels in Each Emissions Category pg. 9 3. Current GHG Emission Values for Each Emissions Source Category pg. 88 4. Projected GHG LCA Emissions Values for a Business-As-Usual Scenario and a Building-Blocks Scenario for Corn Ethanol in 2022 pg. 15

    Bethe Ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions

    Full text link
    We extend the exact periodic Bethe Ansatz solution for one-dimensional bosons and fermions with delta-interaction and arbitrary internal degrees of freedom to the case of hard wall boundary conditions. We give an analysis of the ground state properties of fermionic systems with two internal degrees of freedom, including expansions of the ground state energy in the weak and strong coupling limits in the repulsive and attractive regimes.Comment: 27 pages, 6 figures, key reference added, typos correcte

    First observation of two hyperfine transitions in antiprotonic He-3

    Get PDF
    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of antiprotonic He-3. Due to the helium nuclear spin, antiprotonic He-3 has a more complex hyperfine structure than antiprotonic He-4 which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton.Comment: 8 pages, 6 figures, just published (online so far) in Physics Letters

    Do attractive bosons condense?

    Full text link
    Motivated by experiments on bose atoms in traps which have attractive interactions (e.g. ^7Li), we consider two models which may be solved exactly. We construct the ground states subject to the constraint that the system is rotating with angular momentum proportional to the number of atoms. In a conventional system this would lead to quantised vortices; here, for attractive interactions, we find that the angular momentum is absorbed by the centre of mass motion. Moreover, the state is uncondensed and is an example of a `fragmented' condensate discussed by Nozi\`eres and Saint James. The same models with repulsive interactions are fully condensed in the thermodynamic limit.Comment: 4 pages, Latex, RevTe

    Localization of a 64-kDa phosphoprotein in the lumen between the outer and inner envelopes of pea chloroplasts

    Get PDF
    The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [γ-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [γ-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110000 × g centrifugation

    Euler buckling in red blood cells: An optically driven biological micromotor

    Full text link
    We investigate the physics of an optically-driven micromotor of biological origin. A single, live red blood cell, when placed in an optical trap folds into a rod-like shape. If the trapping laser beam is circularly polarized, the folded RBC rotates. A model based on the concept of buckling instabilities captures the folding phenomenon; the rotation of the cell is simply understood using the Poincar\`e sphere. Our model predicts that (i) at a critical intensity of the trapping beam the RBC shape undergoes large fluctuations and (ii) the torque is proportional to the intensity of the laser beam. These predictions have been tested experimentally. We suggest a possible mechanism for emergence of birefringent properties in the RBC in the folded state

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
    corecore