42 research outputs found
Layer Features of the Lattice Gas Model for Self-Organized Criticality
A layer-by-layer description of the asymmetric lattice gas model for
1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented.
The power spectra of the lattice layers in the direction perpendicular to the
particle flux is studied in order to understand how the white noise at the
input boundary evolves, on the average, into 1/f-noise for the system. The
effects of high boundary drive and uniform driving force on the power spectrum
of the total number of diffusing particles are considered. In the case of
nearest-neighbor particle interactions, high statistics simulation results show
that the power spectra of single lattice layers are characterized by different
exponents such that as one approaches the outer
boundary.Comment: LaTeX, figures upon reques
Switching dynamics between metastable ordered magnetic state and nonmagnetic ground state - A possible mechanism for photoinduced ferromagnetism -
By studying the dynamics of the metastable magnetization of a statistical
mechanical model we propose a switching mechanism of photoinduced
magnetization. The equilibrium and nonequilibrium properties of the Blume-Capel
(BC) model, which is a typical model exhibiting metastability, are studied by
mean field theory and Monte Carlo simulation. We demonstrate reversible changes
of magnetization in a sequence of changes of system parameters, which would
model the reversible photoinduced magnetization. Implications of the calculated
results are discussed in relation to the recent experimental results for
prussian blue analogs.Comment: 12 pages, 13 figure
Anomalously large oxygen-ordering contribution to the thermal expansion of untwinned YBa2Cu3O6.95 single crystals: a glass-like transition near room temperature
We present high-resolution capacitance dilatometry studies from 5 - 500 K of
untwinned YBa2Cu3Ox (Y123) single crystals for x ~ 6.95 and x = 7.0. Large
contributions to the thermal expansivities due to O-ordering are found for x ~
6.95, which disappear below a kinetic glass-like transition near room
temperature. The kinetics at this glass transition is governed by an energy
barrier of 0.98 +- 0.07 eV, in very good agreement with other O-ordering
studies. Using thermodynamic arguments, we show that O-ordering in the Y123
system is particularly sensitive to uniaxial pressure (stress) along the chain
axis and that the lack of well-ordered chains in Nd123 and La123 is most likely
a consequence of a chemical-pressure effect.Comment: 4 pages, 3 figures, submitted to PR
A Method to Study Relaxation of Metastable Phases: Macroscopic Mean-Field Dynamics
We propose two different macroscopic dynamics to describe the decay of
metastable phases in many-particle systems with local interactions. These
dynamics depend on the macroscopic order parameter through the restricted
free energy and are designed to give the correct equilibrium
distribution for . The connection between macroscopic dynamics and the
underlying microscopic dynamic are considered in the context of a projection-
operator formalism. Application to the square-lattice nearest-neighbor Ising
ferromagnet gives good agreement with droplet theory and Monte Carlo
simulations of the underlying microscopic dynamic. This includes quantitative
agreement for the exponential dependence of the lifetime on the inverse of the
applied field , and the observation of distinct field regions in which the
derivative of the lifetime with respect to depends differently on . In
addition, at very low temperatures we observe oscillatory behavior of this
derivative with respect to , due to the discreteness of the lattice and in
agreement with rigorous results. Similarities and differences between this work
and earlier works on finite Ising models in the fixed-magnetization ensemble
are discussed.Comment: 44 pages RevTeX3, 11 uuencoded Postscript figs. in separate file