13 research outputs found
Recommended from our members
From insect to man: Photorhabdus sheds light on the emergence of human pathogenicity
Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called “nutritional virulence” strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway
Hydrogen bonding interactions in a-substituted cinnamic acid ester derivatives studied by FT–IR spectroscopy and calculations
Intermolecular hydrogen bonding interactions in stereoisomeric cc-substituted cinnamic acid methyl esters (methyl 2,3-diphenylpropenoate, methyl 2-phenyl-3-(2'-methoxyphenyl)-propenoate, methyl 2-(2'-methoxyphenyl)-3-phenylpropenoate and methyl-2,3-bis(2'-methoxyphenyl)-propenoate) were studied by FT-IR spectroscopy and model calculations at the semi-empirical quantum chemical level of theory. Intermolecular hydrogen bonds of C-H...O types were found to be general in the solid stare, but rare in solution. In this hydrogen bond the carbon may be part of either aromatic ring or the olefinic bond. The hydrogen bond acceptor may be the carbonyl oxygen or the oxygen in the methoxy substituent. Modeling helped in determining probable hydrogen bonding sites and their positions and provided with approximate geometric parameters (bond lengths and angles). Pointing out differences between the stereoisomers was also possible
Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland)
This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 10(7) cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment
N-(4-Substituted-benzoyl)-N'-beta-(D-glucopyranosyl)ureas as inhibitors of glycogen phosphorylase: Synthesis and evaluation by kinetic, crystallographic, and molecular modelling methods
N-(4-Substituted-benzoyl)-N'-(β-d-glucopyranosyl) ureas (substituents: Me, Ph, Cl, OH, OMe, NO(2), NH(2), COOH, and COOMe) were synthesised by ZnCl(2) catalysed acylation of O-peracetylated β-d-glucopyranosyl urea as well as in reactions of O-peracetylated or O-unprotected glucopyranosylamines and acyl-isocyanates. O-deprotections were carried out by base or acid catalysed transesterifications where necessary. Kinetic studies revealed that most of these compounds were low micromolar inhibitors of rabbit muscle glycogen phosphorylase b (RMGPb). The best inhibitor was the 4-methylbenzoyl compound (K(i)=2.3μM). Crystallographic analyses of complexes of several of the compounds with RMGPb showed that the analogues exploited, together with water molecules, the available space at the β-pocket subsite and induced a more extended shift of the 280s loop compared to RMGPb in complex with the unsubstituted benzoyl urea. The results suggest the key role of the water molecules in ligand binding and structure-based ligand design. Molecular docking study of selected inhibitors was done to show the ability of the binding affinity prediction. The binding affinity of the highest scored docked poses was calculated and correlated with experimentally measured K(i) values. Results show that correlation is high with the R-squared (R(2)) coefficient over 0.9