692 research outputs found

    A Conclusive Test of Abelian Dominance Hypothesis for Topological Charge in the QCD Vacuum

    Get PDF
    We study the topological feature in the QCD vacuum based on the hypothesis of abelian dominance. The topological charge QSU(2)Q_{\rm SU(2)} can be explicitly represented in terms of the monopole current in the abelian dominated system. To appreciate its justification, we directly measure the corresponding topological charge QMonoQ_{\rm Mono}, which is reconstructed only from the monopole current and the abelian component of gauge fields, by using the Monte Carlo simulation on SU(2) lattice. We find that there exists a one-to-one correspondence between QSU(2)Q_{\rm SU(2)} and QMonoQ_{\rm Mono} in the maximally abelian gauge. Furthermore, QMonoQ_{\rm Mono} is classified by approximately discrete values.Comment: LATTICE98(confine), 3 pages, Latex, 3 figures include

    Skyrmion ↔\leftrightarrow pseudoSkyrmion Transition in Bilayer Quantum Hall States at ν=1\nu =1

    Full text link
    Bilayer quantum Hall states at ν=1\nu =1 have been demonstrated to possess a distinguished state with interlayer phase coherence. The state has both excitations of Skyrmion with spin and pseudoSkyrmion with pseudospin. We show that Skyrmion ↔\leftrightarrow pseudoSkyrmion transition arises in the state by changing imbalance between electron densities in both layers; PseudoSkyrmion is realized at balance point, while Skyrmion is realized at large imbalance. The transition can be seen by observing the dependence of activation energies on magnetic field parallel to the layers.Comment: 12 pages, no figure

    Monopole Current Dynamics and Color Confinement

    Get PDF
    Color confinement can be understood by the dual Higgs theory, where monopole condensation leads to the exclusion of the electric flux from the QCD vacuum. We study the role of the monopole for color confinement by investigating the monopole current system. When the self-energy of the monopole current is small enough, long and complicated monopole world-lines appear, which is a signal of monopole condensation. In the dense monopole system, the Wilson loop obeys the area-law, and the string tension and the monopole density have similar behavior as the function of the self-energy, which seems that monopole condensation leads to color confinement. On the long-distance physics, the monopole current system almost reproduces essential features of confinement properties in lattice QCD. In the short-distance physics, however, the monopole-current theory would become nonlocal and complicated due to the monopole size effect. This monopole size would provide a critical scale of QCD in terms of the dual Higgs mechanism.Comment: 6 pages LaTeX, 5 figures, uses espcrc1.sty, Talk presented at International Conference on Quark Lepton Nuclear Physics, Osaka, May. 199

    Solitons in Chern-Simons theories of nonrelativistic CP^{N-1} models: Spin textures in the quantum Hall effect

    Full text link
    Topological solitons in CP^{N-1} models coupled with Chern-Simons gauge theory and a Hopf term are studied both analytically and numerically.These models are low-energy effective theories for the quantum Hall effect with internal degrees of freedom, like that in bilayer electron systems. We explicitly show that the CP^{N-1} models describe quite well spin textures in the original Chern-Simons theory of bosonized electrons.Comment: Latex, 19 pages, 6 figure

    Confinement and Topological Charge in the Abelian Gauge of QCD

    Get PDF
    We study the relation between instantons and monopoles in the abelian gauge. First, we investigate the monopole in the multi-instanton solution in the continuum Yang-Mills theory using the Polyakov gauge. At a large instanton density, the monopole trajectory becomes highly complicated, which can be regarded as a signal of monopole condensation. Second, we study instantons and monopoles in the SU(2) lattice gauge theory both in the maximally abelian (MA) gauge and in the Polyakov gauge. Using the 163Ă—416^3 \times 4 lattice, we find monopole dominance for instantons in the confinement phase even at finite temperatures. A linear-type correlation is found between the total monopole-loop length and the integral of the absolute value of the topological density (the total number of instantons and anti-instantons) in the MA gauge. We conjecture that instantons enhance the monopole-loop length and promote monopole condensation.Comment: 3 pages, LaTeX, Talk presented at LATTICE96(topology
    • …
    corecore