560 research outputs found
Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere
Einstein realised that the fluctuations of a Brownian particle can be used to
ascertain properties of its environment. A large number of experiments have
since exploited the Brownian motion of colloidal particles for studies of
dissipative processes, providing insight into soft matter physics, and leading
to applications from energy harvesting to medical imaging. Here we use
optically levitated nanospheres that are heated to investigate the
non-equilibrium properties of the gas surrounding them. Analysing the sphere's
Brownian motion allows us to determine the temperature of the centre-of-mass
motion of the sphere, its surface temperature and the heated gas temperature in
two spatial dimensions. We observe asymmetric heating of the sphere and gas,
with temperatures reaching the melting point of the material. This method
offers new opportunities for accurate temperature measurements with spatial
resolution on the nanoscale, and a new means for testing non-equilibrium
thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques
Non-invasive evaluation of the effect of metoprolol on the atrioventricular node during permanent atrial fibrillation.
During atrial fibrillation (AF), conventional electrophysiological techniques for assessment of refractory period or conduction velocity of the atrioventricular (AV) node cannot be used. We aimed at evaluating changes in AV nodal properties during administration of metoprolol from electrocardiogram data, and to support our findings with simulated data based on results from an electrophysiological study
BPS branes in discrete torsion orbifolds
We investigate D-branes in a Z_3xZ_3 orbifold with discrete torsion. For this
class of orbifolds the only known objects which couple to twisted RR potentials
have been non-BPS branes. By using more general gluing conditions we construct
here a D-brane which is BPS and couples to RR potentials in the twisted and in
the untwisted sectors.Comment: 20 pages, LaTe
Fractional two-branes, toric orbifolds and the quantum McKay correspondence
We systematically study and obtain the large-volume analogues of fractional
two-branes on resolutions of orbifolds C^3/Z_n. We study a generalisation of
the McKay correspondence proposed in hep-th/0504164 called the quantum McKay
correspondence by constructing duals to the fractional two-branes. Details are
explicitly worked out for two examples -- the crepant resolutions of C^3/Z_3
and C^3/Z_5.Comment: 34 pages, 2 figures, LaTeX (JHEP3 style); (v2) typos corrected; (v3)
sec 3 reorganise
B-type defects in Landau-Ginzburg models
We consider Landau-Ginzburg models with possibly different superpotentials
glued together along one-dimensional defect lines. Defects preserving B-type
supersymmetry can be represented by matrix factorisations of the difference of
the superpotentials. The composition of these defects and their action on
B-type boundary conditions is described in this framework. The cases of
Landau-Ginzburg models with superpotential W=X^d and W=X^d+Z^2 are analysed in
detail, and the results are compared to the CFT treatment of defects in N=2
superconformal minimal models to which these Landau-Ginzburg models flow in the
IR.Comment: 50 pages, 2 figure
Rigidity and defect actions in Landau-Ginzburg models
Studying two-dimensional field theories in the presence of defect lines
naturally gives rise to monoidal categories: their objects are the different
(topological) defect conditions, their morphisms are junction fields, and their
tensor product describes the fusion of defects. These categories should be
equipped with a duality operation corresponding to reversing the orientation of
the defect line, providing a rigid and pivotal structure. We make this
structure explicit in topological Landau-Ginzburg models with potential x^d,
where defects are described by matrix factorisations of x^d-y^d. The duality
allows to compute an action of defects on bulk fields, which we compare to the
corresponding N=2 conformal field theories. We find that the two actions differ
by phases.Comment: 53 pages; v2: clarified exposition of pivotal structures, corrected
proof of theorem 2.13, added remark 3.9; version to appear in CM
Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For
the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and
N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively,
relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair
of participant nucleons is found to increase from peripheral to central
collisions around mid-rapidity. These results constrain current models of
particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to
show corrected calculation of and ; final version accepted for
publicatio
D-brane Categories for Orientifolds -- The Landau-Ginzburg Case
We construct and classify categories of D-branes in orientifolds based on
Landau-Ginzburg models and their orbifolds. Consistency of the worldsheet
parity action on the matrix factorizations plays the key role. This provides
all the requisite data for an orientifold construction after embedding in
string theory. One of our main results is a computation of topological field
theory correlators on unoriented worldsheets, generalizing the formulas of Vafa
and Kapustin-Li for oriented worldsheets, as well as the extension of these
results to orbifolds. We also find a doubling of Knoerrer periodicity in the
orientifold context.Comment: 45 pages, 6 figure
Nuclear Stopping in Au+Au Collisions at sqrt(sNN) = 200 GeV
Transverse momentum spectra and rapidity densities, dN/dy, of protons,
anti-protons, and net--protons (p-pbar) from central (0-5%) Au+Au collisions at
sqrt(sNN) = 200 GeV were measured with the BRAHMS experiment within the
rapidity range 0 < y < 3. The proton and anti-proton dN/dy decrease from
mid-rapidity to y=3. The net-proton yield is roughly constant for y<1 at
dN/dy~7, and increases to dN/dy~12 at y~3. The data show that collisions at
this energy exhibit a high degree of transparency and that the linear scaling
of rapidity loss with rapidity observed at lower energies is broken. The energy
loss per participant nucleon is estimated to be 73 +- 6 GeV.Comment: 5 pages, 4 figure
- …